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ABsTRAcr 

Simple parallel algorithms for the maximal 
independent set (MIS) problem are presented. The 
first algorithm is a Monte Carlo algorithm with a very 
local property. The local property of this algorithm 
may make it a useful protocol design tool in distri- 
buted computing environments and artificial intelli- 
gence. One of the main contributions of this paper is 
the development of powerful and general technicjues 
for converting Monte Carlo algorithms into deter- 
ministic algorithms. These techniques arc used to 
convert the Monte Carlo algorithm for the MIS prob- 
lem into a simple deterministic algorithm with the 
same parallel running time. 

0. Introduction 

A maximal independent set (MIS) in an 
undirected graph is a maximal collection of vertices I 
subject to the restriction that no pair of vertices in I 
are adjacent. The MIS problem is to Bnd a MIS. In 
this paper, fast parallel algorithms are presented for 
the MIS problem. All of the algorithms arc especially 
noteworthy for their simplicity. The first algorithm 
(section 3) is a Monte Carlo algorithm with a very 
local property: each vertex is randomly chosen to be 
added to the independent set based only on 

information about adjacent vertices in the graph. The 
local properties of this algorithm may make it a useful 
protoco! design tool in distributed computing environ- 
ments and artificial intelligence (sections 8 and 9). 

One of the main contributions of this paper is the 
development of powerful and general techniques for 
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converting Monte Carlo algorithms into deterministic 

algorithms. The random choices made in the first dgo- 
rithm are mutually independent. A more rophirti- 

catcd analysis of the algorithm shows that the random 
choices need only be p&wise indepcndenr [Fr] (section 
4). A general technique is developed which converts a 
probability space with a large sample space where 
events arc mutually independent to a new probability 
space with a very small sample space where events are 
pairwise independent (section 5). The new sample 
space contains O(n2) points. The second algorithm, 
which randomly samples from the new sample space, 
uses a very small number of random bits to choose 
each sample point (section 6). The thiid algorithm in 
parallel samples all points in the sample space and 
WCS the best sample point at each atcp (section 6). 
This algorithm is deterministic. 

For purposes of analysis the EREW P-RAM 
parallel computer is used, in which concurrent reads 
or writes to the same memory location are diilowed. 
The thud algorithm can be modified to a uniform cir- 
cuit family, where the circuit which accepts inputs of 
length n has depth O((logn)2) and polynomial in II 
gates. This establisher that the MIS problem is in NC2 
(see [Co] for a discussion of the complexity class NC). 
The following table summarizer the features of each 
algorithm, where EO(p) is used to denote rk cxpccrcd 
value is O(p). 

Algorithm Roccssors Tie Random Bits 



1. History of the MIS Problem 

The obvious sequential algorithm for the MIS 
problem can be simply stated as: Initialixe I to the 
empty set; For v = 1, . . . . II, if vertex v is not adjacent 
to any vertex in I then add vertex v to I. The MIS 
output by this algorithm is called the lexicographically 
first maximal independent set (LFMIS). Valiant [Va] 
noted that the MIS problem, which has such an easy 
sequential algorithm, may be one of the problems for 
which there is no fast parallel algorithm. Cook [Co] 
strengthened this belief by proving that outputting the 
LFMIS is NC’complete f0r.P. Tbis gave strong evi- 
dence that there is no NC algorithm which outputs 
the LFMIS. Thus, it became clear that either there 
was no fast parallel algorithm for the MIS problem or 
else the fast parallel algorithm had to have a com- 
pletely different design than the sequential algorithm. 

Surprisingly, Karp and Wigderson [KW] did 
develop a fast parallel algorithm for the MIS problem. 
They present a randomized algorithm with expected 
running time O((logn)‘) using O(n2) processors, and 
a deterministic algorithm with running time 

n3 O((fogn)‘) using 0 - 
I 1 Own 1” 

processors on a EREW 

P-RAM, also establishiig the result that the MIS 
problem is in NC’. This paper describes algorithms 
which are substantially simpler than their algorithm, 
and establishes that the MIS problem is in NC*. 

Alon, Babai and Itai [ABI) independently found a 
Monte Carlo algorithm for the MIS problem shortly 
after this work was completed which is very similar to 
the Monte Carlo algorithm presented in section 3. The 
running time of their algorithm is the same as the run- 
ning time of the Monte Carlo algorithm presented in 
section 3 on a EREW P-RAM, but on the more 
powerful CRCW P-RAM they have an implementa- 
tion of their algorithm with a running time of 
EO (logn ) . 

2, Applications of the MIS Algorithm 

A growing number of parallel algorithms use the 
MIS algorithm as a subroutine. Karp and Wigderron 
(KW) gave NC’ reductions from the Muxfmul Ser 

Packing and the Maxiwaal Mar&@ problems to the 
MIS problem, and an NC* reduction from the 2- 
Sarlsfiubiliry problem to the MIS problem. In this 

paper, it is shown that there is a NC’ reduction from 
the Markzl Coloring problem (section 7) to the MIS 
problem. Thus, using the results of this paper, all of 
these problems are now known to be in NC*. Kow- 
ever, Cook and Luby [CL] previously shoged that 2- 
Sarisf iabiliry is in NC * . 

Lev [Le], previous to [KW], had deslgtted an algo- 
rithm for the Muxfmaf Marching problem with running 
time O((lo,gn)’ on a P-RAM (and also establiied that 

the problem is in NC’). Israeli and Shiloach [IS) have 
an algorithm for Mdtimnl Marching, using a more 
powerful CRCW P-RAM, where the running time is 
O((logn))). Israeli and Itai [II] have a Monte Carlo 
algorithm for Muxfmul Murc~Arg, using the more 
powerful CRCW P-RAM, where the expected running 
time is 0 @gn). The results in this paper improve 
upon all of these results. 

Recently, Karloff [Kfl] used the MIS algorithm 
as a subroutine for the Odd gut Cover problem. This 
algorithm can be used to convert the. Monte Carlo 
algorithm for hf0xtnru.w MercAfng [Kvw] into a Las 
Vegas algorithm. Also, [KSSJ use both the MIS atgo- 
rithm and the Maximal Coloring algorithm to bad a A 
vertex coloring of a graph when A is small, where A is 
the maximum degree of any vertex in the graph. 

3. Monte Carlo MIS Algorithm 

3.1 Algeritbm Bescrfptlon 

In this section a simple Monte Carlo algorithm is 
presented for the MIS problem. The input to the MI!I 
algorithm is an undirected graph G =(V , E) . The out- 
put is a maximal independent set I G V . For all 
WCV, let N(W)={wCV :3vCW ,(v,w)CE}. Let 
d(v) be the degree of vertex v with respect to the 
graph G ’ in the description below. 

It is easy to show that I is a maximal independent 
set in G at the termination of the algorithm. Each 
execution of the body of the while loop can be imple- 
mented in O(fogn ) time on a EREW PRAM using 
O(m) processors, where the expected number of ran- 
dom bits used is O(n). In the next section the 
expected number of executions of the wbIIe loop 
before termination of the algorithm is proven to be 
O(fogn). Thus, the expected running time of the 
entire algorithm on a EREW P-RAM is O((loga)*) 
using 0 (m ) processors, where the expected number of 
random bits used is 0 (nlogn). 
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Let m t be the number of edges in G ’ before the 
execution of the body of the rhUe loop. Let m2 be 
the random variable which is the number of edges in 
G * after the execution of the body of the wItBe loop. 
Let ml be the random variable which is the number of 
edges eliminated from G ’ due to one execution of the 
while loop. Then, m2 -ml - mX . Theorem 1 cstab- 

lishes that E[m3]z iwtr. Thus, E[m2JS i*t. 

From this it is easily seen that the expected number of 
executions of the while loop is O(logn ) with very high 
probability, These details are omitted from this 

paper- 
For all v C V let E, be the event that v is chosen 

in the (0) step of the algorithm (these events are 

mutually independent), let pv - Pt [E,] - 1 and 
2-d(v) 

let sum, = 2 pr . The following lemma will be 
w cd(v) 

useful for the proof of theorem 1. 

lkmmrl: Pr[vCN(f’)]~ +-min(~~,,l). 

Proof : WLOG let (1, - * * ,d (v)} be the vertices ftt 

odj(v). Let E,’ be the event E 1, aucl for 

2s i s d(v).let 

Pr[v CN(Z’)]Z 
d ~1 
f; Pr[E,‘)~Pr[A, 1 E;] . 
i-1 

But 

&[A, I E,‘]z Pr[A,]z 1- 

In the next section, lemma 2, it is shown that 

even when the events {E,} are only pairwisc indepen- 

dent. Thus, Pr [v C N (f ‘)] 2 + -min(sum, ,l) q 

1 
Theorem 1: E[m3]r gmI 

Proof : For all W E V , the set of edges touching W is 

ET(W)={(v,w)CE I vfW or wCW ). 

The edges eliminated due to one execution of the 
while loop are the edges in the set ET [Z ’ U N (I ‘)I. 

Each edge (v , w ) is in ET [I ’ U N (f ‘)] &her because 
vCr’UN(I’) orbecauscwef’UN(f’). Thus, 

From lemma 1, Pr[vCN(f’)]z + ~min(sum, J). 

Thus, 
1 E[m3]r i* 

I 

2 d(v)-sum, + x d(v) 
VCV’ VCV’ 

#wn,Sl rlu&>l 

1 +-* 
= I 

_do+1 +L 
8 (v,r)CB’ 2-d(w) I 8( +cr2 1.1 

rm.r1 ml&>1 
Atmm.> 1 AJq2-1 
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4. Pairwise Independent Events 

The algorithm described in the previous section 
assumed that the events {E,} were mutuaily indepen- 
dent. In this section, the events {E,) are only 
assumed to be p&wise independent [Fr]. The analysis 
shows that under this weaker assumption the algo- 
rithm still has the property that the expected number 
of iterations of the body of the while loop is O(lugn). 
This surprisingly leads to a deterministic implementa- 
tion of the first algorithm. 

The following lemma is used in the proof of 
lemma 1 and completes the analysis of the Srst algo- 
rithm. It may also be useful as a tool in other applica- 
tions. 

Lemma2: LetEt,.-- ,E, be events such that for 
lsisn, Pr[Efl=pc , ad for lsf#:/sn, 

Pr (4 n Ej 1 ‘pi *pj f tit Sw”“XPpi’ Then 
I 

Pr[U E,]k f .min(~wn,l). 
1 

Prool: WLGG that p1zpp2z --*pm. Let El’ be 

the event 6 E, and let uk -i pf . Then, for all 
i-t I-1 

1 s k s n , Pr [E, ‘1 ;t Pr [Ek ‘1. Since the events (E, } 

are pairwise independent, 

(This last inequality follows by observing that LHS of 
the inequality is minimum when all pi are equal to 

$). If a,Sl then Pr[E,‘)z +-F. If 

aI > 1 then let 1 =min{& :a1 Z 1). If C-1 then 

Pr[El’)Zz 1. 
1 If 1~2 then u,-t<lSa,SK 

(This last inequality follows because p1 zr: - - - Z pm ). 

Then, 

Pr[E,‘]r cq .[lqq~ + cl 

One of the basic steps for converting Monte Carlo 
algorithms into deterministic rdgorithms using the 
techniques developed in this paper is the development 
of stronger lemmas of this type. Bonferroni and 
Galambos [Gal inequalities are useful tools for deriv- 
ing upper and lower bounds on the probability of an 
event that is described in terms of elementary events 
that are d-wise independent for some fixed value of 

d . The work of Galambos (Gal can be used towards 
this end. In fact, a stronger version of lemma 2 is 
implicit in the work of Galambos. 

The following lemma is a stronger version of 
lemma 1. The proof of this lemma is similar to the 
proof of lemma 2, only more complicated. 

Lemma 3 : Consider the events {I&} defined above 
lemma 1, only now it is assumed that the events are 
only pairwire independent. Then 

Pr[vCN(l’)]r + 9tla(sum,,l) 

Proof : The notation introduced in the proof of 
lemma 1 is retained. Assume WLOG that 

PI’ .‘. rPd+). Let ae=0 and, for 1~ t Sd(v), 

let a, =: $lp, (note that ad(v) = sum,). Then, 

Pr[vCN(f’)]r’~‘Pr(E,‘]Pr~A, IE;]. 
i=l 

A lower bound is fust derived on Pr [A, I E, ‘1. 

Pr[A, I E;)=l-Pr[+, I E; 1. But, 

Pr[4, IEl’]s 2 Pt[E, IEi’ ] 

$i3% 

and 

Pr[E, I E,‘]= 
Pr[E,n yEIn **- n TE~-,IE~] 

wlEl n -** n IE,,, IE, ] 
. 

The numerator is less than or equal to 
Pr [E, I Ei ] =pr . The denominator is equal to 

l-Pr]btEi lEi]r l-‘$Pr[E, IE,]=l-ai-t. 
i-1 j-1 

Thus, Pr[E, I E,‘)S pI. 
l-al-t 

Consequently, 

Pr[AI I E,‘]k l- 1 l-&X,-t 

W-a4-t) = 2(1-a,,*) ’ 

Now, a lower bound is derived on Pt [E, ’ 1. 

Pr[Ei’]=Pr[Ei]Pr[lEln --- n lEjiIIEi]= 

4 



Thus, for 1s 1 5 d(v), LP, ‘q J Pr[E, ]=p,‘=-. Thus, 
Q 

Ip, -p,’ I S t S + 

’ Pi (l--%-l) Pr[vCfv(f’)]~ 2 --y-- 

ai =-- 
2 2 

1Sj<iSl 
p,pi:~[l-aiq * 

(This last inequality is similar to an inequality in the 

proof of lemma 2.) If rum& then 
L 

If sum,+ then let 1 

then Pr(vW(f’)]~ 

=mi.n{& :a12 +}. If I-1 

1 -. 
4 

If 122 then 

al-l< lSaiS -- 
2 2(k) - 

Pr[vav(f’)]~ 7s f 0 

Then, 

Consider the first MIS algorithm modiied so that 

the events. {E, } are assumed to be only pairwise 

independent. Let m lr m 2 and ma be as defined in the 

discussion preceeding theorem 1 with respect to this 

modified algorithm. Theorem 2, the analog to 

Theorem 1, states that this modified algorithm will 

work well on the average. 

Tbe4Wem 2: E[m3]2 +m, . 

Proof : Use lemma. 3 in place of lemma 1 in the proof 

of theorem 1 q 

5. Generating Paimise Independent Evenb 
Consider a probability space where the sample 

space is the set of all binary vectors of length n. Let 
E, be an event that occurs for all binary vectors 

(bo, * - - ,b,-,) such that b, = 1. Let the probability 

of (bo, - * - ,&) be “ifpibl (l-p, )(*-bll . the 
i-0 

events Eo, -** ,I$+ are mutually independent and 

Pr [E, ] =p, . Note that Cl (n) random bits are needed 

to randomly choose a binary vector. In this section, a 

new probability space is defined where the sample 

space is a small subset of all binary vectors of length 

n. A probability distribution is defined on this new 
sample space such that the events E I, * * . ,E, are 
pairwise independent. 

Let q be a prime number between n and 2n. The 
new probability distribution has the property that 

(This is a sufficient approximation to pi for the appli- 

cations considered in this paper). Consider a n by q 

matrix A. Intuitively, row i of A corresponds to E, 

(In the following discussion, x, y, j, jt and jx are 

integers between 0 and q -1, inclusive, and f , It, and 

i2 are integers between 0 and n -1, inclusive). Let 

11 if OS] Sp,#*q -1 

The new sample space is the collection 
vectors 

b r,y =(bx,ro, - -. ,b,,y”-t) , 

of q2 binary 

where b, ,x1 =A, ,(I +r . ,),,+ . The new probability dis- 

tribution assigns a probability of -!- 

b X.1 * 
q2 

to each such 

Ikmm84: Pr[E,]=p,’ . 

Proof : For fixed 1, there are exactly q pairs of x ,y 

such that (x +y *i)mudq -I. Event E, occurs in all 

b XrY such that (x +y *i)modq is between 0 and 

pi ’ *q - 1, inclusive, i.e. for exactly pi ’ =q2 boolean 

vectors cl 

Lcmm8 5 : Pr[E,, n E,, J =p,,‘-pi; . 

Proof : For fued 1 t and 1,) there is exactly one x ,y 

Pair such that (x+y ‘j,)-Q “11 and 

(x +y .i,)mwdq = 1 2 simultaneously. Events E,, and 

E,, both occur for pI,‘*pia’*q2 pairs of 11,12. Thus, 

E,,and E,, both occur for pi,**pi,**q2 boolean vectors 

b 0 x.1 

These two lemma together show that the events 

{E, } are pairwise independent in the new probability 

space. Since the new sample space only has q2 binary 

vectors, it is possible to sample all vectors quickly in 

parallel. This feature is exploited in the next section 

to design a deterministic algorithm for the MIS prob- 
lem. 

This construction may be a useful tool to make 

other Monte Carlo algorithms deterministic. The only 

requirement is that the algorithm only requires pair- 
wise independent events. This construction can be 

extended to generate painvisc independent random 
variables in the following way. The matrix A can be 

filled with any set of computable rational numbers. 
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Each row of A corresponds to a random variable 
which takes on each of the q entries in that row of A 
with equal probability. Both Paul Beanie and Noga 
Alon have found a natural extension of this technique 
to generate d-wise independent random variables 
using ud sample points. 

shcc Lp,,Y J+ 1 
---P”, 
Q 

Lemma 6 : Let the events {E, } bc pairwisc indcpen- 
dent such that Pr[E, ] =pr’ and such that for all 

vcv, d(v)< +. Then 

6. Deterministic Algorithm far the MIS Pr~b- 
lek 

The algorithms for the MIS problem described in 
this section are almost immediate consequences of the 
results in sections 3, 4 and 5. In section 3, a Monte 
Carlo algorithm for the MIS problem is presented. 
Under the assumption that the events (E, } (de&d 
above lemma 1) are mutually independent, the analysis 
shows that the expected running time of the algorithm 
is small. In section 4, it is shown that the same result 
holds when the events {E, } arc assumed to be pair- 
wise independent. In section 5, i.t is shown how to 
construct a probability distribut:ion such that the 
events {E, } arc pairwisc independent and such that 
the number of points in the sample space is O(n*), 

thus they they can all be sampled in parallel. Putting 
these results together yields a deterministic algorithm 
with a small running time. 

The only difficulty is that the events {E, } do not 
have exactly the same probability in the new probabil- 
ity space as they did in the original. More precisely, 

in the original probability space, Pr[E, ] = --!-- 
U(v) ’ 

whereas in the new probability space, 

Pr[E, I “Pr 
.- LP*‘QJ L-J 26(v) 

4 4 - 
This difficulty is overcome with the following 
modification to the algorithm. If there is a vertex 

vf V such that d (v)s: 2 then v is immediately 

added to the independent set I and {v} U N ({v}) is 

deleted from the graph. In this cuse, at least + of 

the vertices are eliminated from the graph. If no such 

vertex exists, then for all v 6 V, d(v)< E, which 

implies --/I- 2 - 
=@I 

u;v) ) 8 and consequently 

p+ But this implies that LP” ‘4 J -- 2 1. Thus, g 

Pr[vCN(.f’)]r $ mfn (sum,, 1) . 

PreoI : The same proof as for lemma 3, except 

is used as a lower bound and pv is used as an upper 

bound on Pr [E, ] 0 

Tlscorcm 3 : Consider the first MIS algorithm as 
modified above so that the events {E, } are pairwise 
independent and Pr [E, ] =pv ’ and for all v C V, 

d(v)< +. Let ml, m2, and ml be as &l&d in the 

discussion prcccediig theorem 1 with respect to this 

modified algorithm. Then E [ms] 2 f ml. 

Preof : Use lemma 6 in place of lemma 1 in the proof 

of theorem 1 0 

The description of the second algorithm is given 
on the following page. This algorithm is very practi- 
cal because it is simple, fast, uses 8 small number of 
processors and a small number of random bits. Each 
execution of the body of the wldIe loop can be implc- 
mented in O(logn) time on a EREW P-RAM using 
O(m) processors, where the expected number of ran- 
dom bits used is 0(&n). The expected number of 

executions of the while loop before termination of the 
algorithm is 0 (fogn ). Thus, the expected running time 
of the entire algorithm on a EREW P-RAM is 
O((fogn)*) using O(m) processors, where the 
expected number of random bits used is O((logn)t). 

The algorithm can be easily modiicd to remove 
the random choices made in the (9 step of the algo- 
rithm. The idea is to let the algorithm try all q* pos- 

sible pairs x,y in parallel, creating q* sets IrJ’. The 
set which maximizes the number of edgcs eliminated 
from G ’ is used to form the new G I. Theorem 3 

shows that the best set will eliminate at least + of 

the cdgcs in the graph G ‘. This algorithm can be 
implemented on a EREW P-RAM with O(mn*) pro- 
ccssors with running time O((lugn)z). 
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7. The Maximal Coloring Problem 

The Maximal Coloring problem generaliies two 

problems of interest. The input is an undirected 

graph G = (V , E ) and a set of colors C, for each ver- 

tex v E V . The output is a maximal coloring. In a 

man~mal coloring, each vertex v is either assigned a 
color from C, or is not assigned a color, subject to 

the restrictions that no two adjacent vertices are 

assigned the same color and that if v fs not assigned a 

color then each color in C, must be assigned to at 

least one neighbor of v . 

The MIS problem is a special case of the Maximal 

Coloring problem where C, -{red} for each vertex 

v d V . The set of vertices colored r&d in MY maximd 
coloring are a MIS. 

Another problem which is a special case of the 

Maximal Coloring problem is the A+lVC problem. 

The input to the A+lVC problem is an undirected 

graph G =(V ,E ) . Let A be the maximum degree of 

any vertex in V, let A’= A+1 and let C = {ct, . . ..c*.} 

be a set of distinct colors. The output is an assign- 
ment of a color from C to each vertex such that no 

two adjacent vertices are assigned the same color. 
The A+lVC problem is the special case of the Maxi- 

mal Coloring problem where for each vertex v c V, 

C, =C . In any Maximal Coloring each vertex will be 

assigned some color from C because A’ is larger than 

d(v). The obvious sequential algorithm for the 

A+lVC problem follows: For v = 1, . . ..n , vertex v is 

assigned the smallest indexed color from C which is 

not assigned to a smaller indexed adjacent vertex. 

One might hope to devise a fast parallel algorithm for 

the A +lVC problem by emulating the sequential algo- 

rithm. However, this is unlikely since 

Lemm8 7 : The problem of deciding what color ver- 

tex n is assigned by the above sequential algorithm is 

NC’ complete for P . 

Prod : There is an easy reduction from the LFMIS 

problem (see section 1) to this problem 0 

Thus, as was the case for the MIS problem, the color- 

ing algorithm cannot simply emulate the sequential 

algorithm. 

There is‘ a NC’ reduction from the Maximal 

Coloring problem to the MIS problem. Given a Maxi- 

mal Coloring problem with input G = (V, E) and 

color sets {C, }, a new graph G * is formed. The ver- 

tices in G’ are V’={(v,c):vEV ftndc~C,}. The 
edges in G ’ are 

There is a one to one correspondence between 

maximal colorings in G and maximal independent sets 

in G *. This reduction together with the MIS algorithm 

shows that the Maximal Coloring problem is in NC 2. 

The AVC problem is to color all the vertices 

using only A distinct colors. Brook ‘E Theorem [Br] 

proves that all but very special graphs can be colored 

with A colors, and implicitly gives a polynomial time 
sequential algorithm. Karloff, Shmoys and Sorokcr 



[KSS) have found a NC parallel algorithm for the 
AVC problem when A is polylog in the number of 
vertices. Their algorithm uses the algorithm for the 
A +lVC problem as a subroutine. The classification of 
the AVC problem with respect to parallel computa- 
tion is still open for unrestricted A. 

8. Binary Coherent Systems 

Recently, researchers in Artificial Intelligence 
have been actively investigating various connectionist 
models of the brain [Fe],[Go], [Hi],(:Ho]. Some of the 
basic features of the connectionist model are shared 
by knowledge representation schemas [Ts]. Infor- 
mally, they model the brain cells by a large collection 
of computational units with a finite number of states 
and with very limited computing power. They model 
the synaptic connections by interconnections between 
the units through which they can pass information 
about their current state. They describe various 
models for representing knowledge, and suggest mas- 
sively parallel asynchronous algorithms for computing, 
i.e. for acquiring new information, recalling previously 
acquired information and concepts, deducing new con- 
cepts from old, etc. They are faced with two basic 
questions: how to represent knowledge so that the 
representation has the desired semantic properties and 
how to implement parallel asynchronous algorithms to 
compute quickly given a particular representation. 

The hope is that the development of problems which 
seem to model a problem typically encountered by the 
brain, together with a study of the inherent complex- 
ity of algorithms for these problems, will give some 
insight into the low level workings of the brain. 

One particular model of the brain is a binary 
coherent system [Ho], [Hi]. The interconnections of 
the system can be represented by an undirected graph 
G - (V , E ). Each edge c f E has a real-valued weight 
we . Each vertex Y 6 V has a real-valued threshold r, . 
Each vertex v has a state s, which can be either -1 or 
1. The state of the system is a tuple (st ) . . . . s ,v , ). 
The energy of vertex w in a system state is 

,: 
=(v,r)CE 

w, ‘2, 

Hopfield [Ho] addresses the following problem, which 
is hereafter called the Binary Coherent System (BCS) 
problem. The input is an undirected graph 

G - (V ,E ), and weights and thresholds for all edges 
and vertices in G, respectively. The output is a sys- 
tem state where all vertices have energy greater than 
or equal to zero. The BCS problem has a polynomial 
time sequential algorithm if all of the weights and 
thresholds are input in unary. The algorithm repeats 
the following step until all vertices have energy 
greater tha.n or equal to zero: find a vertex with nega- 
tive energy and flip its state. The running time of this 
algorithm i.s slow if the system is large. Hopfield sug- 
gests a simple asynchronous parallel algorithm for this 
problem, but provides no formal analysis of its run- 
ning time, although he does give some empirical evi- 
dence that it is fast. An open question is whether or 
not the BCS problem has an NC algorithm. 

The MIS problem is a special case of the BCS 
problem, where all edge weights are -1 and for each 
VfV, I, =-d(v)+l. Thus, the algorithm described 
in section 6 shows that at least a special case of the 
BCS problem is in NC, and Baruch Awerbuch has 
observed that the algorithm given in section 3 can be 
easily modified to run asynchronously ‘in parallel. 

Another natural problem which is a special case 
of the BCS problem is the Different Than Majority 
Labelling (DTML) problem. The input to this prob- 
lem is an undirected graph G = (V ,E). The output is 
a label of -1 or 1 for each vertex v such that at least 
half of the neighbors of v have the opposite label. 
The DTML problem is a BCS problem where all 
thresholds are zero and all edge weights are -1. The 
DTML problem may also be viewed as a graph parti- 
tion problem: partition the vertices of an undirected 
graph into two sets such that for each vertex Y at least 
half of the edges out of v cross the partition. Karloff 
[Ka2] has :found a NC algorithm for this problem 
when the input is a cubic graph, but the general prob- 
lem is still open. However, there is evidence that a 
different type algorithm than the MIS algorithm will 
have to be found. 

Thawem 4 : The problem of deciding whether there 
is a DTML for a graph such that two speci3ed vertices 

receive the same label is PIPcomplete 0 

This theorem gives evidence that no fast algorithm for 
the DTML problem can permanently decide the labels 
of vertices in a local manner in the same way as is the 
case for the MIS algorithm. 

8 



9. Open Problems and Further Work 

1. Fiid other Monte Carlo algorithms for which the 
techniques developed in this paper are applicable 
for converting the algorithm into a deterministic 
algorithm. There are a number of problems for 
which these techniques provide an easy deter- 
ministic algorithm. 

2. Develop probabilistic bounds on events that are 
d -wise independent. As mentioned previously, 
the work of [Gal implicitly addresses this type of 
question. This seems to be one of the necessary 
steps for proving that a Monte Carlo algorithm 
can be converted into a deterministic algorithm 
using the techniques developed in this paper. In 
a different setting, [ACGS] used the fact that 
Chebychev’s Inequality holds for painvise 
independent events to prove the security of 
RSA/Rabin Bits. Their basic idea was the same, 
you need less random bits to generate pairwise 
independent events than you do to generate 
mutually independent events. 

3. The Monte Carlo algorithm presented in section 3 
has a very local property. This property seems 
particularly well-suited to distributed computing 
networks where the processors can only commun- 
icate with neighboring processors. As pointed 
out in section 8, this feature also seems desirable 
in some Artificial Intelligence applications. Find 
applications for the algorithms presented in this 
paper in these areas. 

4. There is no known lower bound on the parallel 
complexity of the MIS problem. Either 6nd a 
problem which is complete in some complexity 
class (like NL) and reduce it to the MIS problem, 
or else find a faster MIS algorithm. 

10. Acknowledgements 

I thank Paul Beame for extensive discussions 
which helped simplify the analysis of the algorithms, 
and especially for conversations which contributed 
signticantly to the results in sections 4 and 5. I thank 
Stephen Cook for many discussion about the MIS 
problem and related problems, and for his unswerving 
belief that there must be a faster algorithm for the 
MIS problem. Thanks go to both Charlie Rackoff and 
Gary Miller for helpful discussions about the MIS 

problem, and more specifically for suggesting that an 
analysis be done on an algorithm very similar to the 
algorithm’ described in section 3.1. I thank Allan 
Borodin for introducing me to the work on connec- 
tionist models. 

11. References 

[ACGS] 
Alexi, W., Chor, B., Goldreich, 0. and Schnorr, 

C. RSAfRabin Bits are 1+- 1 
2 ~01~ OWN 1 

secure, _, 

25’* FOCS 9 October 1984 

[ABI]Alon, N., Babai, L., and hi, A.,A Far and Sim- 

ple Randomized Parallel Algorirhm for the Maximal 

Independent Set Problem, private communication 

[Br] Brooks, R.L., On colouring rhe nodes of a network, 
Proc. Cambridge Philos. Sot., 37, 194-197, 1941 

[CoJCook, S. A Taxonomy of Problems wirh Fast Paral- 

lel Algorirhms, to appear in Information and Con- 
trol 

[CL]Cook. S. and Luby, M. A Fast Parallel Afgorilhm 

for Finding a Truth Assignment lo a 2-CNF For- 

mula, paper in preparation 

[Fe] Feldman, J. A. A Connecliontsr Model of Visual 

Memory, Parallel Models of Associative Memory, 
GE. Hinton and J.A. Anderson editors, Hillsdale, 
NJ., Lawrence Erlbaum Associates, publishers, 
1981 

[Fr] Feller, W. An ftiroduction to Probabfflfy Theory 

und Its Applicarfons, vol. 1,3” edition, 1968, John 
Wiley and Sons, publishers 

[Ga]Galambos, J., Bonferroni Inequalities, The Annals 
of Probability, 1977, vol. 5, no. 4,577-581 

[GolGoldschlager, L.M. A Compuzrriional Theory of 

Higher Brain Function, Technical Report, Stan- 
ford University, April 1984 

[Ho)Hopficld, J. J., Neural networks and physical sys- 

tem with emergent collecrive computaUona1 abili- 

ties, Proceedings National Academy of Sciences, 
vol. 79, pp. 2554-2558, April 1982 

[Hi] Hinton, GE., Sejnowski, T. and Ackley, D., 
Bollzmann Machines: Consrraint Sarisf action Neb 

works rhar Learn, technical report CMU-CS-84- 
119 

9 



[II] Israeli, A. and Itai, A. A Fusr und Simple Random- 

ized Parallel Algorithm for Maxfmal Murchfttg, 

Computer Science Dept., Technion, Haifa Israel, 
1984 

[IS] Israeli, A. and Shiloach, Y. Awr Improved Muzfmul 

Matching Parallel Algorithm, Tech. Rep. 333, 
Computer Science Dept., Technion, Haifa Israel, 
1984 

[KflJKarlofE, H., Randomfzed Parallel Algorithm for 
the Odd-Set Cover Problem, preprint 

[Kf2]Karloff, H., private communication 

(KSSlKarloff, H., Shmoys, D. and Soroker, D., 
Efffcfent Parallel Algorfthmz for Graph Coloring 
and Partitioning Problems, preprint 

[KWjKarp, RX and Wigderson, A. A Fazt Purolfel 
Algorithm for the Mazimal fndependenf Set Prob. 

km, Proceedings 16th AChf SI’OC (X984), pp. 266- 
272 

WJWI 
Karp, R-M., Upfal, E. and Wigderson, A., Con- 
structing a Petfect Matching is in Random NC, this 
conference 

[Le] Lev G. Size Boundz und Purullef Algorfrhmz for 

Networkz, Report CST-8-80, Department of Com- 
puter Science, University of Edinburgh (1980) 

[Ts] Tsotsos, J. Representatfonul Axes und Temporul 

Cooperutfve Processes, Technical Report RRCV- 
84-2, University of Toronto, April 1984 

[Va] Valiant, L. G. Parullel Comp~utfon, Proceedings 
71h IBM Symposium on Mathematical Founda- 
tions of Computer Science (19g2) 

10 


