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Quorum Systems

High-level functionality:
1. Client selects a free quorum
2. Locks all nodes of the quorum
3. Client releases all locks
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Singleton and Majority Quorum Systems

Singleton quorum system Majority quorum system
(all sets of n/ 2 + 1 nodes)
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Load and Work

2
An access strategy Z defines the probability Q) of accessing aquorum Q €S

such that:

ZQES PZ(Q) =1
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Load and Work

o Load of access strategy Z on a node v,

e Load induced by Z on quorum system S

e Load of quorum system S

e Work of quorum Q
e Work induced by Z on quorum system S

e Work of quorum system S
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Load and Work

Singleton quorum system

eusGes ¥
a

Majority quorum system
(all sets of n/ 2 + 1 nodes)

Singleton Majority

How many servers need to be contacted? (Work)

1 >n/2

What's the load of the busiest server? (Load)

100% = 50%

How many server failures can be tolerated? (Resilience) 0 <n/2
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Basic Grid Quorum System

o Nodes arranged in a square matrix
e Each quorum i contains the union of row i and column i
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B-Grid Quorum System

Nodes arranged in rectangular grid with her rows

Group of r rows is a band

Group of r elements in the same column and band is a mini-column
Quorums consists of one mini-column in every band and one element
from each mini-column of one band

mini-column

}%
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1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.
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Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.
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Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

A: no, as any two quorums intersect!

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.
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Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

A: no, as any two quorums intersect!

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

A: one, as two nodes failing fails all guorums!

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.
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Quiz Solution

1. Does a quorum system exist which can tolerate that all nodes of a specific
quorum fail?

A: no, as any two quorums intersect!

2. Consider the nearly all quorum system, which is made up of n different
guorums, each containing n - 1 servers. What is the resilience?

A: one, as two nodes failing fails all guorums!

3. Can you think of a quorum system that contains as many quorums as
possible? Note: does not have to be minimal.

A: pick a node and take all quorums containing it. Maximality: between
any quorum and its complement at most one can be in the system.
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Consider a quorum system with 7 nodes numbered from 001 to 111, in which each three nodes
fulfilling x & y = z constitute a quorum. In the following picture this quorum system is repre-
sented: All nodes on a line (such as 111, 010, 101) and the nodes on the circle (010, 100, 110)
form a quorum.

111

e Quorums: 7
e Work: 3
e Load: 3/7

a) Of how many different quorums does this system consist and what are its work and its
load?

ETH:zirich
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Consider a quorum system with 7 nodes numbered from 001 to 111, in which each three nodes

fulfilling & y = z constitute a quorum. In the following picture this quorum system is repre-
sented: All nodes on a line (such as 111, 010, 101) and the nodes on the circle (010, 100, 110)
form a quorum.

111

Resilience: 2

Every node is in 3 quorums
=> any two nodes can be
contained in at most 2*3 quorums

@

b) Calculate its resilience f. Give an example where this quorum system does not work
anymore with f 4+ 1 faulty nodes.

011

110

ETH:zirich
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Uniform Quorum Systems

Definitions:
s-Uniform: A quorum system S is s-uniform if every quorum in § has exactly s elements.
Balanced access strategy: An access strategy Z for a quorum system & is balanced if it
satisfies Lz (v;) = L for all v; € V for some value L.

Claim: An s-uniform quorum system & reaches an optimal load with a balanced access strategy,
if such a strategy exists.

a) Describe in your own words why this claim is true.
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Uniform Quorum Systems

10N

Definitions:
s-Uniform: A quorum system S is s-uniform if every quorum in § has exactly s elements.

Balanced access strategy: An access strategy Z for a quorum system & is balanced if it
satisfies Lz (v;) = L for all v; € V for some value L.

Claim: An s-uniform quorum system & reaches an optimal load with a balanced access strategy,
if such a strategy exists.

a) Describe in your own words why this claim is true.

Idea: No matter which quorum gets accessed, exactly s nodes have to work.
=> the sum of all loads should be to s

To minimize the maximum element of a sum, set all elements to the average
(balanced access strategy).



o . //i?-:‘
ETH:zurich nj Distributed  fignie,
8

. X
Systems@ ETH ziricn Com pu tl n g “e‘\ “‘ AT

Uniform Quorum Systems

Definitions:
s-Uniform: A quorum system S is s-uniform if every quorum in § has exactly s elements.
Balanced access strategy: An access strategy Z for a quorum system & is balanced if it
satisfies Lz (v;) = L for all v; € V for some value L.

Claim: An s-uniform quorum system & reaches an optimal load with a balanced access strategy,
if such a strategy exists.

b) Prove the optimality of a balanced access strategy on an s-uniform quorum system.
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Uniform Quorum Systems

b) Let V = {v1,v2,...,v,} be the set of servers and § = {Q1,Q2, ..., @} an s-uniform quorum
system on V. Let Z be an access strategy, thus it holds that: } ,_s Pz(Q) = 1. Further-
more let Lz(v;) = ZQES;ufeQ Pz(Q) be the load of server v; induced by Z.

Then it holds that:

ZLz(@{)= z Z PZ(Q)ZZ ZPZ(Q)

v, eV eV QesS;v, e QeSS v, eQ
=Y Pz(@Q) ) 1= Pz(Q)-s=s" Y Pz(Q)=s
QeS v;EQ Qes Qes

The transformation marked with an asterisk uses the uniformity of the quorum system.

To minimize the maximal load on any server, the optimal strategy is to evenly distribute
this load on all servers. Thus if a balanced access strategy exists, this leads to a system load
of s/n.
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Approximate Agreement

It enables nodes to obtain values that are:

1.within the range of correct inputs (correct-range
validity)
2.e-close for some predefined € > 0 (g-agreement)

3.n > 3f must hold
4.synchronous algorithm for f < n/3 byzantine nodes
5.asynchronous algorithm for f < n/3 byzantine nodes

ETH:zirich
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Algorithm outline

I = a sufficient number of iterations
X, = initial value

fori=1...I
o Distribute your value Xx; ;.

o R = multiset containing the values received.

o T

o X.

Output X,

ETH:zirich

multiset containing all but the lowest f and the highest f values in R.

(mMNT+ maxT)/?2
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Insights
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1. The multisets R contain at most f corrupted values Computing \Sees

=> the multisets T are included in the range of correct values.

2. If any two correct nodes obtain multisets R that intersect in n - f values, the
range of correct values is halved in each iteration

1. synchronous model: simply sending your value to everyone is enough.
2. asynchronous model: witness technique.

ETH:zirich
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e asynchronous network with f < n/3 byzantine nodes

e Properties:
o |If the sender is correct, all correct nodes accept its value eventually.
o If a correct node accepts X, no correct node accepts y != X.
o If a correct node accepts X, all correct nodes accept x eventually.

ETH:zirich
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Key idea:
Once a node accepts values from n - f nodes via Single-Value Reliable

Broadcast, it tries to convince all nodes to wait a bit longer: so that they
receive these nodes’ values as well.

=> nodes obtain multisets R that pair-wise intersect in n - f values.

ETH:zirich
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In the lecture, you have seen a Single-Value Reliable Broadcast algorithm (Algorithm 20.11).
Sometimes, ideas used in the asynchronous model also lead to cute properties in the synchronous

model. Let us analyze the algorithm below in a synchronous network where f < n/3 of the Systems@ ETH
nodes are byzantine. A
Distributed 0%’ s
Computing ¥e %500

Algorithm 1 Single-Valued Reliable Broadcast, But in a Synchronous Network

Code for sender vg with input zg:
Round 1: Send msg(zs) to everyone.

Code for node v:

Round 2:
If you received a message msg(x) from the sender:
Send echo(z) to everyone.

© % NP g e Wy

Round 3 or later:

Upon receiving echo(z) from n — f distinct nodes or

ready(z) from f + 1 distinct nodes:

11: Send ready(z) to everyone.
12:
13: Round 4 or later:
14: Upon receiving ready(z) from 2f + 1 distinct nodes:
15: Accept msg(z).

'—l
=
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a) What strategy should the byzantine nodes use so that two correct nodes accept different

values?

Algorithm 1 Single-Valued Reliable Broadcast, But in a Synchronous Network

'—l
=

11:

© % DT W

Code for sender vg with input zg:
Round 1: Send msg(zs) to everyone.

Code for node v:

Round 2:
If you received a message msg(z) from the sender:
Send echo(z) to everyone.

Round 3 or later:
Upon receiving echo(z) from n — f distinct nodes or
ready(z) from f + 1 distinct nodes:
Send ready(z) to everyone.

12:

13:
14:
15:

Round 4 or later:
Upon receiving ready(z) from 2f 4 1 distinct nodes:
Accept msg(z).

ETH:zirich

Systems @ ETH zun

#e %
Distributed é:v,' .
Computing ¥e %500



a) What strategy should the byzantine nodes use so that two correct nodes accept different Systemse T Hos

values? Lemma 20.16 from the lecture notes ensures that there is no such strategy. g
Distributed é":o':'-'
Computing & %%
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b) Assume that a correct node v has accepted msg(z). Explain why every correct node accepts

msg(x) within two additional communication rounds.

Algorithm 1 Single-Valued Reliable Broadcast, But in a Synchronous Network

'—l
=

11:
12:
13:
14:
15:

© % DT W

Code for sender vg with input zg:
Round 1: Send msg(zs) to everyone.

Code for node v:

Round 2:
If you received a message msg(z) from the sender:
Send echo(z) to everyone.

Round 3 or later:
Upon receiving echo(z) from n — f distinct nodes or
ready(z) from f + 1 distinct nodes:
Send ready(z) to everyone.

Round 4 or later:
Upon receiving ready(z) from 2f 4 1 distinct nodes:
Accept msg(z).

ETH:zirich
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a) What strategy should the byzantine nodes use so that two correct nodes accept different

Systems @ ETH zun
values? Lemma 20.16 from the lecture notes ensures that there is no such strategy. g
b) Assume that a correct node v has accepted msg(z). Explain why every correct node accepts ::f:ng é{"

msg(x) within two additional communication rounds.

If a correct node v accepts msg(x) at some point in time 7, then f+1 correct nodes have sent
ready(z) by time 7. Therefore, since the network is synchronous, all correct nodes receive
these f + 1 messages ready(z) within one additional communication round, and therefore
send ready(z). These messages are afterwards received within one more communication
round, hence within two communication rounds after time 7.

ETH:zirich



c) Assume that a correct node v has not accepted a value by the end of round 4. What does %ﬂﬂi
that tell v about the sender vg? . 2ich
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Algorithm 1 Single-Valued Reliable Broadcast, But in a Synchronous Network

Code for sender vg with input zg:
Round 1: Send msg(zs) to everyone.

Code for node v:

Round 2:
If you received a message msg(z) from the sender:
Send echo(z) to everyone.

© % DT W

Round 3 or later:

Upon receiving echo(z) from n — f distinct nodes or

ready(z) from f + 1 distinct nodes:

11: Send ready(z) to everyone.
12:
13: Round 4 or later:
14: Upon receiving ready(z) from 2f + 1 distinct nodes:
15: Accept msg(z).

'—l
=
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a) What strategy should the byzantine nodes use so that two correct nodes accept different

Systems @ ETH zun
values? Lemma 20.16 from the lecture notes ensures that there is no such strategy. g
b) Assume that a correct node v has accepted msg(z). Explain why every correct node accepts ::Li?n . !".f:::":"'

msg(x) within two additional communication rounds.

If a correct node v accepts msg(x) at some point in time 7, then f+1 correct nodes have sent
ready(z) by time 7. Therefore, since the network is synchronous, all correct nodes receive
these f + 1 messages ready(z) within one additional communication round, and therefore
send ready(z). These messages are afterwards received within one more communication
round, hence within two communication rounds after time 7.

c) Assume that a correct node v has not accepted a value by the end of round 4. What does
that tell v about the sender vg?

Note that, if the sender vg is correct, every correct node accepts msg(zg) in round 4. This
is because all nodes receive the sender’s value by the beginning of round 2. In round 2, all
correct nodes send echo(zg), and these n — f messages get delivered by the third round.
Then, round 3, all correct nodes send ready(xs), and therefore all correct nodes accept the
sender’s value in round 4.

Then, if a node did not receive the sender’s value by the end of round 4, then the sender
must be a byzantine node.
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2.2 From Approximate Agreement to Byzantine Agreement

We want to design an asynchronous byzantine agreement algorithm (where nodes’ inputs are
bits) that relies on Algorithm 20.22 from the lecture nodes. Recall that Algorithm 20.22 achieves
asynchronous approximate agreement even when f < n/3 of the nodes are byzantine.

Nodes proceed as follows: every node joins Algorithm 20.22 with its input bit as initial value.
Once a node obtains a value x from Algorithm 20.22, it outputs 0 if x < 0.5 and 1 otherwise.

a) Does all-same validity hold?
b) What about agreement?

c) Assume an ideal shared coin that enables the nodes to agree on a uniformly distributed
random value in (0,1). Once f + 1 nodes query this shared coin, the random value is
sampled and all nodes learn it eventually.

How can we use this coin to achieve agreement except with probability 1020237

ETH:zirich



2.2

I
From Approximate Agreement to Byzantine Agreement :
Haa

a) Yes. If all correct nodes have the same input bit b, correct-range validity ensures that all

b)

c)

correct nodes obtain value z = b.

No. If the correct nodes have distinct input bits, then they can obtain any e-close values in
[0,1]. It is possible that a correct node obtains x = 0.5 — £/3, and therefore its final output
is 0, while another correct node obtains = 0.5 + €/3 and therefore its final output is 1.

We set ¢ = 1/2-1072°23, The nodes join the approximate agreement algorithm with their
input bits as initial values. When a node obtains a value z, it queries the shared coin. Once
f+ 1 nodes (hence at least one correct node v) query the coin, the random value r is decided
and all nodes learn it eventually. When a node has obtained both the random value r and
a value x via approximate agreement, if outputs 0 if x < r and 1 otherwise.

The outputs = obtained via approximate agreement are e-close, and agreement only fails if
r is between the lowest and the highest values z obtained by correct nodes via approximate
agreement. Then, if the first correct node that queries the coin has obtained value x, all
correct nodes obtain outputs in the interval [x — e, + €]. This means that only values

r € [t — e,z + €] may lead to disagreement. Such a value r is obtained with probability at
most 2 - & = 1072023,
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2.3 Unbounded Input Space: Quick Fix

The approximate agreement algorithms presented in the lecture rely on a publicly known max_range B
that the input space should satisfy. This allows us to (overestimate) a sufficient number of it- hrtind !{" s
erations. To drop this assumption in the synchronous model (Algorithm 20.10), we will yuting pres .t
build a mechanism that enables each node to (over)estimate a max range based on the nodes’
inputs. Hence, if X denotes the multiset of correct inputs, we will ask each node to estimate

max X — min X.

ystems@ ETH zuncn

a) How would obtaining agreement on max X — min X help?
b) Describe in your own words why correct nodes cannot agree on max X — min X.

Instead, each node will try to estimate the initial range X. This can be done using one round
of communication preceding the for loop of Algorithm 20.10.

c) Write an algorithm that uses one round of communication and allows each correct node v
to obtain an estimation max range, > max X — min X.

d) How can the algorithm from Task ¢) be used to replace the hard-coded value I in Algorithm
20.107 Keep in mind that nodes do not obtain the same value max_range,,.

e) Can you provide an upper bound on the number of iterations in your solution in Task d)?
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2.3 Unbounded Input Space: Quick Fix
a) Nodes could simply define the number of iterations I = [log,((max X — min X)/e)].

b) Similarly to correct-input validity, one cannot distinguish between a correct node and a
byzantine node that follows the algorithm correctly, but with an input of its own choice.

c) The algorithm proceeds as follows: every node sends its value to all nodes. Node v computes
its estimation max _range  as the difference between the highest value received (which is at
least max X, since all correct values were received), and the lowest value received (which is
at most min X, also because all correct values were received).

Note: removing the lowest f and the highest f values might discard some correct values and
make the algorithm stop too early.

ETH:zirich



Algorithm 1 Synchronous Approximate Agreement: Unbounded Input Space

Code for node v with input z.

Send v to all nodes.

Add every received value to X.

max_range, = max X — min X.

I, = [log,(max_range, /c)].

Irgo—=21=.

for 7 in 1...1, do
Send x;_; to all nodes.
Add every received value to R;.
If node u sent (halt,z;, ) (now or in some previous iteration), add z;, to R;.
T; = the multiset obtained by removing the lowest f and the highest f values in R;.
z; = (minT; + max T3) /2.

: end for

Send (halt,zs,) to all the nodes.

: Output z1,.

e e e e e
AN ol > oul =
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Algorithm 1 Synchronous Approximate Agreement: Unbounded Input Space

Code for node v with input z.

Send v to all nodes.

Add every received value to X.

max_range, = max X — min X.

I, = [log,(max_range, /c)].

Irgo—=21=.

for 7 in 1...1, do
Send x;_; to all nodes.
Add every received value to R;.
If node u sent (halt,z;, ) (now or in some previous iteration), add z;, to R;.
T; = the multiset obtained by removing the lowest f and the highest f values in R;.
z; = (minT; + max T3) /2.

: end for

Send (halt,zs,) to all the nodes.

: Output z1,.

e e e e e
AN ol > oul =

e) With the mechanism above, not really. The values max_range, are essentially chosen by the
byzantine nodes.



	Computer Systems / Distributed Systems
	Slide 2
	Quorum Systems
	Singleton and Majority Quorum Systems
	Load and Work
	Load and Work
	Load and Work
	Basic Grid Quorum System
	B-Grid Quorum System
	Quiz
	Quiz Solution
	Quiz Solution
	Quiz Solution
	Quiz Solution
	A Quorum System
	A Quorum System
	Uniform Quorum Systems
	Uniform Quorum Systems
	Uniform Quorum Systems
	Uniform Quorum Systems
	Slide 21
	Approximate Agreement
	Algorithm outline
	Insights
	Single Value Reliable-Broadcast
	Witness Technique
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

