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Abstract. Laboratory investigations have shown that a formal theory of fault-tolerance will be essen-
tial to harness nanoscale self-assembly as a medium of computation. Several researchers have voiced an
intuition that self-assembly phenomena are related to the field of distributed computing. This paper
formalizes some of that intuition. We construct tile assembly systems that are able to simulate the so-
lution of the wait-free consensus problem in some distributed systems. This potentially allows binding
errors in tile assembly to be analyzed (and managed) with positive results in distributed computing,
as a “blockage” in our tile assembly model is analogous to a crash failure in a distributed computing
model. We also define a strengthening of the “traditional” consensus problem, to make explicit an
expectation about consensus algorithms that is often implicit in distributed computing literature. We
show that solution of this strengthened consensus problem can be simulated by a two-dimensional tile
assembly model only for two processes, whereas a three-dimensional tile assembly model can simulate
its solution in a distributed system with any number of processes.

1 Introduction

One emerging field of computer science research is the algorithmic harnessing of molecular self-
assembly to produce structures (and perform computations) at the nano scale. In his Ph.D. thesis
in 1998, Winfree [19] used tiles on the integer plane to define a self-assembly model which has become
an influential tool. As noted by several researchers (for example [1]), problems in algorithmic tile self-
assembly share characteristics with better-studied problems in distributed computing: asynchronous
computation, the importance of fault tolerance, and the limitations of local knowledge. In this
paper, we formalize a connection between the two fields, by constructing models of tile assembly
that simulate solutions to the wait-free consensus problem in some distributed systems.

The tile self-assembly literature has considered two main classes of models: models in which tiles
bind to one another in an error-free manner, and models in which there is a positive probability
that mismatched tiles will bind to one another. In an error-permitting model, if mismatched tiles
bind, they can produce a blockage—an unplanned tile configuration that stops a particular section
of an assembly from being able to accrete tiles.

As blockages do occur in wetlab self-assembly experiments, it is natural to ask how we could
make our self-assembly computations as resilient against blockages as possible. Researchers have in-
vestigated mechanisms to limit the chance of blockages through error-correction (for example [3] [5]),
or, relatedly, for a tile assembly to “heal” itself in the event of damage [14]. Like other error-
correcting codes, these mechanisms can consume significant overhead, and only reduce without
eliminating the possibility of a blockage. Our interest in this paper, therefore, is to build a frame-
work for robust self-assembly even in the presence of one or more unhealable blockages. Of course,
if we consider a situation in which multiple subassemblies grow independently, then the blockage of
one subassembly will have no effect on the others. The problem arises when otherwise independent
subassemblies send information to, or receive information from, one another, and need to coordinate
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based on that information—hence our motivation to import the consensus problem into the world
of tile assembly.

The most common types of processor faults modeled in distributed computing are crash fail-
ure (where a processor stops functioning) and Byzantine failure (where a processor can behave
maliciously and take “worst-possible” steps). Several other types of failure have been defined; in
general, their severity lies between crash failure and Byzantine failure. We will focus on shared
objects that can be simulated in the presence of a tile self-assembly analogue of crash failures,
to construct a theoretical foundation for synchronized fault-tolerance in self-assembly. In the long
run, we believe that the combination of error-correction and distributed computing techniques (to
manage a variety of failures) will produce self-assembling systems with high fault-tolerance.

The consensus problem was originally defined by Lamport for a system of distributed processors,
as an abstraction of the transaction commit problem in database theory. It has since been shown
to have wide application to the study of distributed systems; see, for example, Attiya and Welch [2]
for a textbook introduction. In brief, given a system of n distributed processors, a solution to the
consensus problem is an algorithm that ensures all nonfaulty processors agree on the same value.
(There is also a “validity” condition to ensure the algorithm is not trivial.) The consensus problem
for a system of n processors is called n-consensus, and a consensus algorithm is termed wait-free
if up to n − 1 processors can crash in an n processor system, and even so all correctly working
processors will decide on the same value.

This paper is part of a larger program to connect the fields of self-assembly and distributed
computing. By reducing models of self-assembly to models of distributed processors, one can
apply known distributed computing impossibility results to obtain limits to the power of self-
assembly [16] [17]. On the other hand, by simulating models of distributed computing in self-
assembly, one can use strong techniques like ultrametrics to generalize known self-assembly re-
sults [18]. The objective of the current paper is to explore which distributed objects can (and
cannot) be simulated by self-assembling systems, in order to clarify how positive results of dis-
tributed computing can apply to self-assembly.

We have organized the rest of the paper as follows. Section 2 provides further background about
tile self-assembly and distributed computing. In Section 3, we construct a tile assembly simulation
of wait-free 2-consensus. In Section 4, we define a strengthening of the consensus problem, and show
that two-dimensional tile assembly systems cannot simulate solutions to it for systems of three or
more processes, but three-dimensional tile assembly systems can. Section 5 concludes the paper
and provides suggestions for future research.

2 Background

2.1 Tile self-assembly background

Winfree’s objective in defining the Tile Assembly Model was to provide a useful mathematical
abstraction of DNA tiles combining in solution in a random, nondeterministic, asynchronous man-
ner [19]. Rothemund [12], and Rothemund and Winfree [13], extended the original definition of the
model. For a comprehensive introduction to tile assembly, we refer the reader to [12]. Intuitively,
we desire a formalism that models the placement of square tiles on the integer plane, one at a time,
such that each new tile placed binds to the tiles already there, according to specific rules. Tiles
have four sides (often referred to as north, south, east and west) and exactly one orientation, i.e.,
they cannot be rotated.
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A tile assembly system T is a 5-tuple (T, σ,Σ, τ, R), where T is a finite set of tile types; σ is the
seed tile or seed assembly, the “starting configuration” for assemblies of T ; τ : T ×{N,S,E,W} →
Σ × {0, 1, 2} is an assignment of symbols (“glue names”) and a “glue strength” (0, 1, or 2) to the
north, south, east and west sides of each tile; and a symmetric relation R ⊆ Σ × Σ that specifies
which glues can bind with nonzero strength. In this model, there are no negative glue strengths,
i.e., two tiles cannot repel each other.

In this paper, we allow for the possibility of errors in binding between tiles. While, in general,
binding errors can cause unplanned configurations to be built, we will make a simplifying assumption
that the only binding errors that might occur are tile blockages, tile mismatches that prevent any
further tiles from binding to the subassembly at which the blockage occurred. In particular, no
erroneously bound tile can be enclosed by tiles that attach later in the process of self-assembly.

A configuration of T is a set of tiles, all of which are tile types from T , that have been placed
in the plane, and the configuration is stable if the binding strength (from τ and R in T ) at every
possible cut is at least 2. An assembly sequence is a sequence of single-tile additions to the frontier
of the assembly constructed at the previous stage. Assembly sequences can be finite or infinite in
length. The result of assembly sequence −→α is the union of the tile configurations obtained at every
finite stage of −→α . The assemblies produced by T is the set of all stable assemblies that can be built
by starting from the seed assembly of T and legally adding tiles. If α and β are configurations of
T , we write α −→ β if there is an assembly sequence that starts at α and produces β. An assembly
of T is terminal if no tiles can be stably added to it.

We are, of course, interested in being able to prove that a certain tile assembly system always
achieves a certain output. In [15], Soloveichik and Winfree presented a strong technique for this:
local determinism. An assembly sequence −→α is locally deterministic if (1) each tile added in −→α
binds with the minimum strength required for binding; (2) if there is a tile of type t0 at location l
in the result of α, and t0 and the immediate “OUT-neighbors” of t0 are deleted from the result of
−→α , then no other tile type in T can legally bind at l; the result of −→α is terminal. Local determinism
is important because of the following result.

Theorem 1 (Soloveichik and Winfree [15]). If T is locally deterministic, then T has a unique
terminal assembly.

2.2 Distributed computing background

Distributed computing began as the study of networks of processors, in which each processor had
limited local knowledge. However, much of the distributed computing literature now speaks in terms
of systems of processes, not processors, to emphasize that the algorithms or bounds obtained from
the theorem apply to any appropriate collection of discrete processes, whether they are part of the
same multicore chip, or spread across a sensor network.

One of the most-studied distributed computing models is the asynchronous shared memory
model, in which processes are modeled as finite state machines that can read and write to one
or more shared memory locations called registers. The model is asynchronous because there is no
restriction on when a process will execute its next computation step, except that any nonfaulty
process can delay only a finite length of time before taking its next step. We refer the reader to [2]
for exposition and technical details of such a model. We now provide a formal definition of the
consensus problem for a distributed system.
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Definition 1. Let M be an asynchronous shared memory model such that each process pi in M
has two special state components: xi, the input; and yi, the decision value. Let V , the set of possible
decision values, be a finite set of positive integers. We require that xi ∈ V for all i. For each i,
yi starts out containing a null entry, yi is write-once, and the value written cannot be erased. A
solution to the consensus problem is an algorithm that guarantees the following.

Termination Every nonfaulty process pi eventually writes a value to yi.
Agreement For any i, j, if pi and pj are nonfaulty and write to yi and yj, then yi = yj. All

nonfaulty processes decide on the same decision value.
Validity If all processes hold the same input value at the start of execution of the algorithm, then

any value decided on must be that common input value.

We will consider fault-tolerant consensus, in which one or more processes can fail in some way. The
simplest type of failure—and the only type we will consider in this paper—is crash failure, meaning
that at some point a process ceases operation and never takes another step.

It is a classic result of distributed computing that there is no deterministic algorithm that
solves the consensus problem in an asynchronous shared memory model, in the presence of even
a single crash failure, when the only registers available to the system are read/write registers [4].
One way to overcome that impossibility result is by making the registers more powerful. These
more powerful registers are often called objects or shared objects, to emphasize they might be a
special process segment unto themselves, not just a single memory location. For a comprehensive
introduction to the theory of shared objects with different consensus strengths, see [7]. We will use
only the following key definitions in this paper.

Definition 2. Object O solves wait-free n-process consensus if there exists an asynchronous con-
sensus algorithm for n processes, up to n − 1 of which might fail (by crashing), using only shared
objects of type O and read/write registers. In distributed system M, O is a consensus object if each
process in M can invoke O with a command invoke(O,v), where v ∈ V is a possible decision
value, and O will ack with command return(O, vout), where vout ∈ V is a possible decision value,
and O returns the same value vout to all processes that invoke it. O is an n-consensus object if O
is a consensus object and n is maximal such that O solves wait-free n-process consensus.

Finally, we define the notions of configurations and execution segments of a distributed system.
Intuitively, we consider the events of a system to be the read and write invocations (and acks)
performed upon (and returned by) registers by the processors of the system; and configurations
and execution segments are built up from the instantaneous state of the system, and events that
are then applied to it.

Definition 3. Let M be a distributed system with n processes and one n-consensus object O. A
configuration of M is an (n + 1)-tuple 〈q1, . . . , qn, o〉, where qi is a state of pi and o is a state of
O. The events in M are the computation steps by the processes, the transmission of a consensus
decision value from O, and the (possible) crashes of up to n− 1 of the processes. A legal execution
segment of M is a sequence of form C0, φ0, C1, φ1, C2, φ2 . . . where each Ci is a configuration, φi is
an event, and the application of φi to Ci−1 results in Ci.

3 Simulating 2-consensus in two dimensions

We turn now to the simulation in tile assembly of shared objects that solve wait-free consensus
problems. For clarity of exposition, we will discuss in detail how to simulate 2-consensus by a two-
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dimensional tile assembly system, and in the next section sketch how to extend the simulation to
more processes, and to a third tiling dimension.

Winfree showed how to simulate the behavior of a Turing machine by means of a “wedge
construction” in tile assembly [19]. Patitz and Summers [11] extended this wedge construction so
that the notion of “simulate” would mean that each row of the wedge records the state of the Turing
machine tape after one move of the head, and, if the Turing machine halts, a row of tiles is built
along the side of the wedge, so a special “halting tile” binds to the base of the wedge, as a marker
that the simulation has halted. Inspired by [11], we recently demonstrated a construction whereby
tiles can simulate distributed processors in a message-passing system (Theorem 6 of [18]), and we
will now modify that machinery, to construct a tile simulation of processors that communicate
with shared objects. (For reasons of space, we will not formally define what it means for a wedge
construction to “simulate” a distributed processor p, but the intuition is that we add an input
buffer and an output buffer to Winfree’s original construction by having every other row of the
wedge check to see whether a message has been received, and to incorporate the message if one has
arrived; and we simulate the sending and receipt of a constant-size number of messages by using
a unique tile that encodes the message to build a ray along the edge of the wedge, toward the
intended destination of the message, and a ray back along the edge of the wedge to simulate the
ack—the character that acknowledges receipt of the message.)

Intuitively, the main objective of this section is to construct a tile assembly system that behaves
as shown in Figure 1: there are three “modules” or subassemblies: one (π1) to simulate p1, another
(π2) to simulate p2, and a third to simulate a 2-consensus object. In addition, there are “rays” of
tiles built from π1 and π2, to simulate the values that p1 and p2 are writing to the 2-consensus
object; and “rays” of tiles built in response, to simulate the acks received by p1 and p2 after the
writes conclude. The main formal objective in this section is to prove Theorem 2, stated below.

Definition 4. Tile assembly system T simulates distributed system M if:

1. There is a 1-1 mapping h from configurations of M to stable tile configurations of T .
2. If C0, φ0, C1, φ1 · · ·Ci, φi is a legal execution segment of M, then h(C0) −→ h(C1) −→ · · · −→

h(Ci) is a legal tile assembly sequence in T .
3. If there is no legal execution segment from C0 to C1 in M, then there is no legal tile assembly

sequence in T such that h(C0) −→ h(C1).
4. Let C be a configuration of M and C be a set of configurations of M. If M is such that, upon

achieving configuration C, it must eventually achieve some configuration C ′ ∈ C unless a process
crashes, then T is such that, if it ever reaches h(C) then it must achieve h(C ′) for some C ′ ∈ C
unless there is a tile blockage. (Note that C may be an infinite set.)

5. If C0, φ0, C1, φ1 is a legal execution segment in M, and the event φ0 is the crash failure of a
previously correct process, then h(C1) contains one more tile blockage binding error than h(C0)
contains.

6. If in configuration C of M all processes have halted, then in tile configuration h(C) of T there
are no further locations to which tiles can bind stably, i.e., h(C) is terminal.

Theorem 2. Let M be an asynchronous message passing model of distributed computing with
two processes and one 2-consensus object O, such that p1 and p2 send no messages to each other,
and such that each process invokes O at most once. Then there is a tile assembly system T that
simulates M.
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Subassembly π1

Simulation of processor one

Seed
assembly

“2-consensus 
object” of 
Figure 2

Subassembly π2

Simulation of processor two

Fig. 1. Two (yellow) subconfigurations π1 and π2 growing from a common (green) seed assembly. (The arrows indicate
the order in which tiles bind to the assembly.) They communicate with the configuration shown in Figure 2, by means
of (blue) “message” tiles they send, and (purple) “ack” tiles they receive back. Intuitively, π1 and π2 simulate two
processes in a distributed system, communicating with a 2-consensus object.

To prove Theorem 2 we first exhibit a tile configuration that can simulate a 2-consensus object.

Lemma 1. Fix V any finite set. There is a tile configuration ρ that contains a binding location l
with the following properties: (1) the only tiles that bind at l have nonzero glue strenghs at either
the south, north and west sides, or the south, north and east sides; (2) any tile that binds at l will
have a glue name taken from V on either its east or west side; (3) if glue name v ∈ V is on the
tile that binds at l, then the name of the tile’s north glue will be “Ackv,” and ρ will build a ray
transmitting the glue name Ackv to its west and east.

We omit the proof of Lemma 1; it essentially describes the construction shown in Figure 2.

Proof (Theorem 2). Fix M, a system of distributed computing per the theorem statement, let V
be the set of possible input values to the consensus problem that O might be invoked to solve, and
let k = |V |. We will design T so it builds the structure shown in Figure 1.

Using the machinery from the proof of Theorem 6 in [18], let T1 be a tile assembly system
that simulates p1, T2 a tile assembly system that simulates p2, and T3 a tile assembly system that
constructs ρ, a simulator of a 2-consensus object, per Lemma 1. Without loss of generality, we can
require T1 to build in a direction opposite to T2 (west and east), and for each to build in such a
way that they simulate the growth of the Turing machine tape by extending one additional tile to
the south at every other column of the construction. We will build T by extending T ∗ to include
the simulation of communication between those two processes and the consensus object.

Extend T ∗ to T by adding, for each of the k possible decision values, unique tiles of the form
shown in Figure 2(i), so π1 and π2 can send rays to ρ, and receive acks as shown in Figure 2(iv). (The
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Fig. 2. Diagram of the simulator of a 2-consensus object used to prove Theorem 2. At stage (i), rays from subassemblies
π1 and π2 approach location l. At stage (ii), a tile binds at l, in this case deciding in favor of the input value of
subassembly π1. At stage (iii), the simulator sends an ack to π1. At stage (iv), the simulator sends an ack to π2.
“Stage” (v) demonstrates the alternative: a decision tile has bound in favor of the initial value of π2, and the simulator
has acked to π2.
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diagram shows a simulation of binary consensus, with only glue names “0” and “1.” We replace
those glue names with a total of k distinct names.) We also include in T the tiles needed so that
a subconfiguration that simulates a process can send, and receive, one tile’s worth of information.
(See [18] for details on how to construct the sending of tiles of information. To receive information
back, we use the construction in [18] and ensure the glues on one side are of the form that they
accept an ack back, as shown in Figure 2.)

A straightforward induction argument shows that T does indeed simulate M.

4 Simulating distributed systems with three or more processes

One critical difference between “classical” distributed systems and tile assembly systems is that
sending messages—and writing to shared memory locations—in a distributed system does not affect
the future computation resources available to processes; whereas in a tile assembly system, the tiles
placed on the plane to simulate such operations may “box in” other subassemblies, so they cannot
grow beyond some point, due to tile blockages. Put another way, systems of distributed processes
have multidimensional resources: each process computes using its own set of resources, and message-
passing takes place via a different set of resources. By contrast, every tile operation self-assembles
using the same shared resource: the surface. It is, therefore, not surprising that to simulate this
resource-independence of distributed systems, tile assembly systems require multiple surfaces, that
is to say, three spatial dimensions. Formalizing that is the main objective of this section.

Definition 5. Let M be a system of distributed processes such that all correctly-operating processes
will run forever. A solution to the Consensus Subroutine Problem for M is an algorithm A that
solves the wait-free consensus problem for M in such a way that no process increases its likelihood
of crash failure by calling A as a subroutine.

If M has only two processes, then a tile assembly system of the form in Figure 1 will solve the
Consensus Subroutine Problem for M, because there is enough space on the surface for π1, π2 and
the messages to and from ρ to assemble without interfering. For M with three or more processes,
the situation is different. If we attempt to simulate processes that run forever in two dimensions, the
tile configurations that simulate the processes must grow without bound. This will cause destructive
collision with tiles attempting to communicate information with an n-consensus object.

Theorem 3. Let M be a system of n distributed processes (n ≥ 3) and one n-consensus object,
such that all correctly-working processes will run forever. Then no two-dimensional tile assembly
system can simulate a solution of the Consensus Subroutine Problem for M.

We omit the proof from this version of the paper, and instead refer the reader to Figure 3, which
presents the key idea pictorially.

Theorem 4. Let M be a system of n distributed processes (n ≥ 3) and one n-consensus object O,
such that the processes do not send one another messages, each process invokes O at most once, and
all correctly-working processes will run forever. There is a three-dimensional tile assembly system
that simulates solution of the Consensus Subroutine Problem for M.

Proof (Sketch). The construction of Figure 1 was successful because the communication between
π1 and ρ, and π2 and ρ, did not block the growth of either π1 or π2. We duplicate that effect by
placing the tile configuration that simulates n-consensus object O above the seed assembly (in the
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Fig. 3. For π1 and π2 to agree on a decision value, they must agree on a value at some location l. If the information
at l is tiled outside the blue area before π1 and π2 incorporate it into their simulation of p1 and p2, it will block
further progress of (at least) one of π1, π2. So to simulate an execution where p1 and p2 take no further steps until
p3 has decided, the decision value must lie inside the blue area. But if π3 sends a ray into the blue area to obtain the
decision value, it permanently blocks growth of π1 or π2 (the figure shows π3 blocking π1). However, π3 has no other
way to make progress if π1 and π2 agree on a value, and then no more tiles bind to π1 or π2 until π3 has committed
to a decision. (The point is information-theoretic. If the ray from π3 connects to a ray from the red circle before a
ray from the red circle connects to π1 or π2, then π1 or π2 will be forever unable to send information through that
tile configuration.)

z-direction), and requiring that the tiles that simulate processes have glue names on their “tops”
(their upward faces in the z-direction) that create paths for transmission of proposed decision
values, and reception of acks of those transmissions. The construction of three-dimensional cubes
from two-dimensional tiles is a known theoretical technique [8]. We omit the explanation of three-
dimensional tiling configurations that simulate n-consensus objects for n ≥ 3 from this version of
the paper. The key idea, however, is that such a construction contains a “decision point,” and the
message that reaches the decision point first floods as the ack to all processes. So there exists a
three-dimensional tile assembly system T that simulates the Consensus Subroutine Problem for
M.

5 Conclusion

We have shown how two-dimensional tile assembly systems can simulate solution to the consensus
problem for some two-process distributed systems, and how three-dimensional tile assembly systems
can simulate a strengthening of the consensus problem for some n-process distributed systems, for
any n. One way to extend our current results would be to consider what types of communication
among processes could be simulated by tile assembly.

In this paper, we assumed that the only way a tile simulation could fail was via a blockage that
immediately caused the entire subassembly to stop growing. A more extreme failure assumption
(analogous to “Byzantine” failures in the language of distributed computing) would be that a
subassembly might grow in a malformed, haywire fashion. It would be interesting to see what
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application research into Byzantine failures might have to issues of fault-tolerance in tile self-
assembly.
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