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Previous approaches for computing duplicate-sensitive aggregates in wireless sensor networks have
used a tree topology, in order to conserve energy and to avoid double-counting sensor readings. How-
ever, a tree topology is not robust against node and communication failures, which are common in
sensor networks. In this article, we present synopsis diffusion, a general framework for achieving
significantly more accurate and reliable answers by combining energy-efficient multipath routing
schemes with techniques that avoid double-counting. Synopsis diffusion avoids double-counting
through the use of order- and duplicate-insensitive (ODI) synopses that compactly summarize
intermediate results during in-network aggregation. We provide a surprisingly simple test that
makes it easy to check the correctness of an ODI synopsis. We show that the properties of ODI syn-
opses and synopsis diffusion create implicit acknowledgments of packet delivery. Such acknowledg-
ments enable energy-efficient adaptation of message routes to dynamic message loss conditions,
even in the presence of asymmetric links. Finally, we illustrate using extensive simulations the
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1. INTRODUCTION

In a large wireless sensor network, aggregation queries often assume greater
importance than individual sensor readings. Previous studies [Madden et al.
2002a; Zhao et al. 2003] have shown that computing aggregates in-network,
that is, combining partial results at the intermediate nodes during message
routing, significantly reduces the amount of communication and hence the en-
ergy consumed. A popular approach used by sensor database systems [Madden
et al. 2003; Yao and Gehrke 2003] is to construct a spanning tree in the network,
rooted at the querying node, and then perform in-network aggregation along
the tree. Partial results propagate level-by-level up the tree in distinct epochs,
with each node listening for messages from all its children before sending a
new partial result to its parent. The tree topology in this aggregation scheme
ensures that (i) each node sends only one message in computing an aggregate
result and (ii) the reading from each sensor is accounted for only once in this
result.

However, aggregating along a tree is very susceptible to node and transmis-
sion failures, which are common in wireless sensor networks [Madden et al.
2002a; Zhao and Govindan 2003; Zhao et al. 2003]. This is because there is only
a single path in the tree from a sensor reading to the querying node. More-
over, messages are typically sent using energy-efficient but unreliable commu-
nication, in order to conserve energy. Thus, each node or transmission failure
loses an entire subtree of readings. As a result, a large fraction of the readings
are typically unaccounted for in a tree-based scheme, causing significant er-
rors in query answers [Considine et al. 2004; Madden et al. 2002a; Zhao et al.
2003]. Figure 1 shows a typical example when using a tree-based scheme (TAG
[Madden et al. 2002a]), for a query computing the average of all the sensor
readings at each epoch. In a typical epoch (Figure 1(a)), only 89 of the 600 read-
ings reach the querying node, and over a range of epochs, the computed average
exceeds the actual average by a factor of 4–11 (see the TAG curve in Figure 1(b)).

1.1 Existing Robust Aggregation Techniques

Two classes of techniques have been proposed to make the in-network ag-
gregation process more robust. The first class uses reliable communication
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Fig. 1. (a) Random placement of 600 sensors in a 20 × 20 unit area and their simulated activity
with a realistic wireless communication model (details in Section 6). The lines show the paths
taken by the sensor readings that reached the querying node at the center, at the completion
of a typical epoch. All other readings were lost due to communication failures. (b) The average
value computed with different aggregation schemes, for each of 40 epochs. Each sensor has a value
inversely proportional to the square of its distance from the querying node at the center, emulating
the intensity readings of a radiation source at the center.

protocols [Wan et al. 2004; Stann and Heidemann 2003]. These approaches in-
cur significant energy and latency overhead, as shown by Reliable Directed Dif-
fusion [Stann and Heidemann 2003]. The second class of techniques uses topolo-
gies that are more robust than a tree topology. Examples of such techniques in-
clude gossip-based aggregation [Boyd et al. 2005; Chen and Pandurangan 2005;
Dimakis et al. 2006; Gupta et al. 2001; Kempe et al. 2003] and Tiny Aggregation
over a DAG [Madden et al. 2002a]. In the latter, each node with accumulated
value v sends v/k to each of its k parents in a directed acyclic graph (DAG) topol-
ogy. For aggregates such as Count or Sum, this reduces from v to v/k the error
resulting from a single packet loss, but the overall aggregation error remains
high. This is demonstrated in Figure 1(b), which shows that both the tree (TAG)
and the DAG (TAG2, two parents) versions consistently overestimate the actual
average value. Moreover, the high variance of the computed aggregate suggests
that simply scaling the measured value up or down will not solve the problem.
To avoid this problem, gossip-based aggregation [Boyd et al. 2005; Chen and
Pandurangan 2005; Dimakis et al. 2006; Kempe et al. 2003], in which nodes
repeatedly send a fraction of their accumulated value to a random other node,
requires a reliable communication protocol. However, as noted above, reliable
communication incurs significant energy overhead. [Gupta et al. 2001] provides
a gossip-based aggregation algorithm that does not require reliable communi-
cation, but does require expensive mechanisms such as explicit maintenance
of a balanced tree and (multihop) communication between random pairs of
nodes. Finally, there are many highly robust gossip-based protocols [Jenkins
et al. 2001; Karp et al. 2000; Vogels et al. 2003] that do not require reliable
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Table I. Classification of Aggregation Schemes Based on Whether They Use a Robust Topology
and Whether They Use Energy-Efficient Unreliable Communication

Reliable Communication Unreliable Communication
Tree topology Robust, not energy-efficient Energy-efficient, not robust

For example, Reliable Directed
Diffusion [Stann and
Heidemann 2003]

For example, TAG [Madden
et al. 2002a], Directed
Diffusion [Intanagonwiwat
et al. 2000]

More robust topology Robust, not energy-efficient Energy-efficient and robust
For example, Gossip [Kempe

et al. 2003]
For example, Synopsis

diffusion (this article)

communication, but they are designed primarily for information dissemination
and cannot be directly used for in-network aggregation.

The fundamental problem with these schemes is that aggregation and the
required routing topology are tightly coupled. As a result, it is not possible
to use arbitrarily robust routing, like multipath routing, to mask node and
transmission failures. While desirable for its robustness, multipath routing
creates the problem of message duplication: individual readings and partial
sums sent along multiple paths cause a large fraction of the readings to be
accounted for multiple times in the query answer. For example, if a partial sum
were sent along four paths (to improve the likelihood that at least one path
would succeed), and three of them happen to succeed, that partial sum would
contribute to the total sum three times instead of once.

1.2 Synopsis Diffusion

In this article, we present synopsis diffusion, a general framework for combining
multipath routing schemes with clever algorithms to avoid double counting. By
decoupling aggregation from message routing, synopsis diffusion enables the
use of arbitrary multipath routing. Thus, for example, the level of redundancy
in message routing, as a tradeoff with energy consumption, can be adapted to
sensor network conditions. As a result, highly accurate and reliable answers can
be obtained, all the while consuming roughly the same energy as (inaccurate,
unreliable) tree-based schemes. Moreover, the aggregation process remains rel-
atively independent of the underlying dynamics of message routing, so that the
aggregation code can be written without worrying about such dynamics.

Table I summarizes how synopsis diffusion and different existing approaches
fit within the general design space.

Synopsis diffusion achieves its decoupling of aggregation and routing
through the use of order- and duplicate-insensitive (ODI) synopses. To the best
of our knowledge, this is the first article to formally define and study this im-
portant class of synopses. Previous and concurrent works [Alon et al. 1999;
Bawa et al. 2004; Considine et al. 2004; Flajolet and Martin 1985; Palmer et al.
2002; Tao et al. 2004] considered only isolated examples of such synopses. ODI
synopses are small-size digests of the partial results received at a node such
that any particular sensor reading is accounted for only once. In other words,
the synopsis at a node is the same regardless of (1) the order in which readings
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or partial results are received, and (2) the number of times a given reading
from a given sensor arrives at the node (either directly or indirectly via partial
results). While developing ODI synopses for aggregates such as Max and Min
is trivial, ODI synopses for duplicate-sensitive aggregates (e.g., Sum, Count,
Avg, Median, Uniform sample) are more challenging to devise.

This article establishes a formal foundation for synopsis diffusion and
demonstrates its implications to sensor network aggregation. It makes the fol-
lowing contributions:

—A novel aggregation framework. We introduce and formalize the synopsis
diffusion framework and the ODI synopses. Moreover, we present simple
properties that characterize ODI synopses, and show how these proper-
ties can be used to ease the design of (provably correct) synopsis diffusion
algorithms.

—Better aggregation topologies. We show how ODI synopses enable energy-
saving communication strategies such as (1) exploiting the wireless broad-
cast communication medium by having any and all listeners take advantage
of any message they hear, (2) eliminating acknowledgment messages because
ODI synopses enable implicit acknowledgments, and (3) quickly accounting
for changes in network connectivity. By exploiting these techniques, we show
how to construct an adaptive aggregation topology (Adaptive Rings) that is
as energy efficient as—but much more robust than—a tree topology. Its sig-
nificant accuracy improvement is demonstrated in Figure 1(b) by the A.RINGS

curve.
—Example aggregates. We present a number of aggregates that can be accu-

rately estimated using ODI synopses. These include count, sum, average,
min, max, moment statistics, quantiles, range aggregates, frequent items,
and uniform samples.

—Performance evaluation. We present an extensive performance study on a
realistic simulator (the TAG system simulator) demonstrating the signifi-
cant robustness, accuracy, and energy-efficiency improvements achieved by
synopsis diffusion.

Synopsis diffusion has recently been implemented on top of the sensornet
protocol (SP) [Polastre et al. 2005] and evaluated on several hardware platforms
including mica2 and telos.

Concurrent with our work, Considine et al. [2004] independently proposed
using duplicate-insensitive sketches for robust aggregation in sensor networks
and demonstrated the advantages of a broadcast-based multipath routing
topology over previous tree-based approaches. However, as we will discuss in
Section 7, they primarily focused on energy-efficient computation of the Sum
aggregate, and did not address the other contributions listed above.

The remainder of the article is organized as follows. Section 2 presents the
basic synopsis diffusion approach. Section 3 presents our formal framework
and theorems for ODI synopses. Section 4 presents ODI synopses for additional
aggregates. Section 5 describes our Adaptive Rings routing scheme. Section 6
describes our experimental results and various tradeoffs that synopsis diffusion
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enables. Section 7 describes related work, and our conclusions appear in Sec-
tion 8. Some additional details appear in the Appendix.

2. SYNOPSIS DIFFUSION

In this section, we describe synopsis diffusion, a novel in-network aggrega-
tion framework that enables robust, highly accurate estimations of duplicate-
sensitive aggregates. The basic approach is to use best effort, multipath rout-
ing schemes (e.g., [Ganesan et al. 2001]) together with duplicate-insensitive
in-network aggregation schemes. This section describes the general framework
and, to illustrate the framework’s use, presents examples of both a routing
scheme (called Rings) and an aggregation scheme (for the Count aggregate).
Although the description is based on adapting the TAG communication model
and continuous query scheme [Madden et al. 2002a], it is not dependent on the
particular model or scheme.

Synopsis diffusion performs in-network aggregation. The partial result at a
node is represented as a synopsis [Babcock et al. 2002; Gibbons and Matias
1999], a small digest (e.g., histogram, bit-vectors, sample, etc.) of the data. The
aggregate computation is defined by three functions on the synopses:

—Synopsis generation. A synopsis generation function SG(·) takes a sensor
reading (including its metadata) and generates a synopsis representing that
data.

—Synopsis fusion. A synopsis fusion function SF(·, ·) takes two synopses and
generates a new synopsis.

—Synopsis evaluation. A synopsis evaluation function SE(·) translates a syn-
opsis into the final answer.

The exact details of the functions SG(), SF(), and SE() depend on the par-
ticular aggregate query to be answered. An example is given at the end of this
section; additional examples are presented in Section 4.

A synopsis diffusion algorithm consists of two phases: a distribution phase in
which the aggregate query is flooded through the network and an aggregation
topology is constructed, and an aggregation phase where the aggregate values
are continually routed toward the querying node. Within the aggregation phase,
each node periodically uses the function SG() to convert sensor data to a local
synopsis and the function SF() to merge two synopses to create a new local
synopsis. For example, whenever a node receives a synopsis from a neighbor,
it may update its local synopsis by applying SF() to its current local synopsis
and the received synopsis. Finally, the querying node uses the function SE() to
translate its local synopsis to the final answer. The continuous query defines
the desired period between successive answers, as well as the overall duration
of the query [Madden et al. 2003; Yao and Gehrke 2003]. One-time queries can
also be supported as a special, simplified case.

An important metric when discussing the quality of query answers in the
presence of failures is the fraction of sensor nodes contributing to the final
answer, called the percent contributing. With synopsis diffusion, a sensor node
contributes to the final answer if there is at least one failure-free “propagation
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Fig. 2. Synopsis diffusion over the Rings topology. Crossed arrows and circles represent failed
links and nodes.

path” from it to the querying node. A propagation path is a hop-by-hop sequence
of successfully transmitted messages from the sensor node to the querying node.
Note that it does not require that the sensor’s reading actually be transmitted in
the message, because, with in-network aggregation, the reading will typically
be folded into a partial result at each node on the path.

Although the synopsis diffusion framework is independent of the underly-
ing topology, to make it more concrete, we describe next an example overlay
topology, called Rings, which organizes the nodes into a set of rings around the
querying node.

2.1 Synopsis Diffusion on a Rings Overlay

During the query distribution phase, nodes form a set of rings around the query-
ing node q as follows: q is in ring R0, and a node is in ring Ri if it receives the
query first from a node in ring Ri−1 (thus a node is in ring Ri if it is i hops away
from q). The subsequent query aggregation period is divided into epochs and
one aggregate answer is provided at each epoch. As in Madden et al. [2002a], we
assume that nodes in different rings are loosely time synchronized and are allot-
ted specific time intervals when they should be awake to receive synopses from
other nodes. The duration of the allotted time is determined a priori based on
the density of deployment (so that even if the sensors perform carrier sensing,
all the sensors get enough time to transmit their messages once). For simplicity,
we assume that this allotted time is the same for all nodes in the deployment.
This time can be determined by first identifying the maximum local density
of the deployment (i.e., the maximum number of nodes whose transmissions
interfere with each other) and then finding, via experiments, the total amount
of time the nodes require to transmit at least one message each.

We now describe the query aggregation phase in greater detail, using the
example Rings topology in Figure 2 for illustration. In this example, node q
is in R0, there are five nodes in R1 (including one node that fails during the
aggregation phase), and there are four nodes in R2. At the beginning of each
epoch, each node in the outermost ring (R2 in the figure) generates its local
synopsis s = SG(r), where r is the sensor reading relevant to the query an-
swer, and broadcasts it. A node in ring Ri wakes up at its allotted time, gener-
ates its local synopsis s := SG(·), and receives synopses from all nodes within
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transmission range in ring Ri+1.1 Upon receiving a synopsis s′, it updates its
local synopsis as s := SF(s, s′). At the end of its allotted time the node broad-
casts its updated synopsis s. Thus, the fused synopses propagate level-by-level
toward the querying node q, which at the end of the epoch returns SE(s) as the
answer to the aggregate query.

Figure 2 shows that, even though there are link and node failures, nodes B
and C have at least one failure-free propagation path to the querying node q.
Thus their sensed values are accounted for in the answer produced this epoch.
In contrast, all of the propagation paths from node A failed, so its value is not
accounted for.

Because the underlying wireless communication is broadcast, each node
transmits exactly once; therefore, Rings generates the same optimal number
of messages as tree-based approaches (e.g., [Madden et al. 2002a, 2002b, 2003;
Zhao et al. 2003]). However, because synopses propagate from the sensor nodes
to the querying node along multiple paths, Rings is much more robust. (This
added robustness is quantified in Section 6.)

2.2 Duplicate-Sensitive Aggregates

With synopsis diffusion, aggregation can be done over arbitrary message rout-
ing topologies. The main challenge of a synopsis diffusion algorithm is to support
duplicate-sensitive aggregates correctly for all possible multipath propagation
schemes. As we will show in Section 3, to achieve this, we require the target
aggregate function (e.g., Count) to be mapped to a set of order- and duplicate-
insensitive (ODI) synopsis generation and fusion functions. Intuitively, such a
set of functions ensures that a partial result at a node u is determined by the
set of readings from sensor nodes with propagation paths to u, independent of
the overlap in these paths and any overlap with redundant paths. No matter
in what combination the fusion functions are applied, the result is the same.
Thus a sensor reading is accounted for (exactly once) in the aggregate if there
is a propagation path from the sensor node to the querying node, and it is never
accounted for more than once. We illustrate such functions using the following
algorithm for Count.

2.2.1 Count. This algorithm counts the approximate total number of live
sensor nodes in the network. (It can be readily adapted to other counting prob-
lems.) Note that the standard in-network approach for Count, where each node
sums its children’s accumulated counts and sends the sum to its parent(s),
will not work with arbitrary topologies—the same value may be counted more
than once if the topology is not a tree. The approximation algorithm we present
here is adapted from Flajolet and Martin’s algorithm (FM) [Flajolet and Martin
1985] for counting distinct elements in a multiset. It is a well-known algorithm
for duplicate-insensitive approximate Count [Bawa et al. 2004; Considine et al.
2004; Przydatek et al. 2003]. The algorithm uses the following coin tossing

1Note that there is no one-to-one (or even static) relationship between the nodes in ring Ri and
those in ring Ri+1—a node in ring Ri fuses all the synopses it overhears from the nodes in ring
Ri+1.
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experiment CT(x): toss a fair coin until either the first heads occurs or x coin
tosses have occurred with no heads, and return the number of coin tosses. For
example, possible outcomes of CT(3) are 1 (when the first toss is heads), 2 (first
toss tails, second toss heads), or 3 (first two tosses tails); these occur with prob-
ability 1

2 , 1
4 and 1

4 , respectively. Note that CT() simulates the behavior of the
exponential hash function that is used in FM:

for i = 1, . . . , x − 1 : CT (x) = i with probability 2−i. (1)

In the Appendix A.2, we will show how CT() can be efficiently implemented in
resource-constrained sensors.

The different components of the synopsis diffusion algorithm for Count are
as follows.

—Synopsis. The synopsis is a bit vector of length k > log(n), where n is an
upper bound on the number of sensor nodes in the network.2

—SG(). Output is a bit vector s of length k with only the CT(k)th bit set.
—SF(s, s′). Output is the bitwise Boolean OR of the bit vectors s and s′.
—SE(s). If i is the index of the lowest-order bit in s that is still zero, output

2i−1/0.77351 [Flajolet and Martin 1985].

If all the live sensor nodes have at least one failure-free propagation path,
then the final bit vector s to which SE() is applied will indicate precisely which
bit positions have been set by at least one node. Intuitively, the number of live
sensor nodes, N , is proportional to 2i−1 because by (1) the probability of N nodes
all failing to set the ith bit is (1−2−i)N . This is approximately 1/e < 0.37 when
N = 2i, and even smaller for larger N . The accuracy of the algorithm can be
improved by having each synopsis maintain multiple independent bit vectors
and then taking the average of the indices within SE() [Flajolet and Martin
1985].

In Section 3, we will prove formally the order- and duplicate-insensitivity
of this algorithm and that the approximation error guarantees of [Flajolet and
Martin 1985] hold for the algorithm.

Additional examples in Section 4 demonstrate that synopsis diffusion can be
used for very differing aggregates, if suitable ODI synopses can be found.

3. FORMAL FRAMEWORK, THEOREMS, AND IMPLICATIONS

In this section, we present the first formal foundation for duplicate-insensitive
aggregation. We define a synopsis diffusion algorithm to be ODI-correct if and
only if its SG() and SF() functions are order- and duplicate-insensitive. Intu-
itively, these two properties ensure that the final result is independent of the
underlying routing topology—the computed aggregate is the same irrespective
of the order in which the sensor readings are combined and the number of
times they are included during the multipath routing. We formalize these two
requirements later in this section. We begin with the following definitions.

2The upper bound can be approximated by the total number of sensor nodes deployed initially, or
by the size of the sensor-id space.
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Fig. 3. Equivalent graphs under ODI-correctness.

3.1 Definitions

A sensor reading r is a tuple consisting of both one or more sensor measurements
and any metadata associated with the measurements (e.g., timestamp, sensor
id, and location). A synopsis computation is a finite collection of sensor readings,
SG() functions applied to the sensor readings, and SF() functions applied to
pairs of synopses generated by SG() or SF() functions, resulting in a synopsis s.
We can represent a synopsis computation by its aggregation DAG, as shown
in Figure 3(a). There is a node for each of the different instantiations of the
functions SG() (the leaf nodes in the DAG) and SF() (the nonleaf nodes). There
is an edge e : f1 → f2 if and only if the output of the function f1 is an input
to the function f2. Thus all internal nodes have two incoming edges and 0 or
more outgoing edges.

We define a synopsis label function, SL(), for a synopsis s inductively from
its aggregation DAG, as follows. There are two cases for SL(s), depending on
whether the synopsis s results from an application of SF() or an application of
SG():

SL(s) =
{

SL(s1) � SL(s2) if s = SF(s1, s2),

{r} if s = SG(r).

The operator � takes two multisets and returns the multiset consisting of
all the elements in both multisets, including any duplicates. For example,
{a, b, c, c} � {b, c, d } = {a, b, b, c, c, c, d }. SL() is a multiset consisting of all the
sensor readings contributing to s, possibly with duplicates. It is determined by
the sensor readings and the applications of SG() and SF()—it is independent of
the particulars of SG() and SF(). Note that a synopsis label is a virtual concept,
used only for reasoning about the correctness of SG() and SF() functions: SL()
is not executed by the sensor network.

The notion of what constitutes a “duplicate” may vary from query to query,
for example, a query computing the number of sensors with temperature above
50◦F considers two readings from the same sensor as duplicates, whereas a
query for the number of distinct temperature readings considers any two read-
ings with the same temperature as duplicates. For a given query q, we define
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a projection operator

�q : multiset of sensor readings �→ ordered set of values

that converts a multiset of sensor readings (tuples) to its corresponding ordered
set of subtuples (called values) by selecting some set of the attributes in a tuple
(the same set for all tuples), discarding all other attributes from each tuple, and
then removing any duplicates in the resulting multiset of subtuples. The set of
selected attributes must be such that two readings are considered duplicates
for the query q if and only if their values are the same. For example, for a query
computing the number of distinct temperature readings, the value for a sensor
reading is its temperature measurement. For a query computing the average
temperature, the value of a sensor reading is its (temperature measurement,
sensor id) pair. The set of values is ordered according to an arbitrary total order
on the value domain.

3.2 ODI-Correctness

We now define what it means to be order- and duplicate-insensitive. Let R be
the universe of valid sensor readings. Consider a SG() function, a SF() function,
and a projection operator �q ; these define a universe, S, of valid synopses over
the readings in R. We assume that SF() is a deterministic function of its inputs.
The formal definition of the properties we seek is as follows:

—A synopsis diffusion algorithm is ODI-correct if SF() and SG() are order-
and duplicate-insensitive functions, that is, they satisfy the following: for all
synopsis computations resulting in some synopsis s ∈ S: s = SG∗(V ), where
V = �q(SL(s)) = {v1, . . . , vk} and SG∗() is defined inductively as

SG∗(V ) =
{

SF(SG∗(V − {vk}), SG(rk)) if |V | = k > 1,

SG(r1) if |V | = 1.

where �q({ri}) = {vi}.3

Figure 3 helps illustrate ODI-correctness. Corresponding to an aggregation
DAG (Figure 3(a)), ODI-correctness defines a canonical left-deep tree (Fig-
ure 3(b)). The leaf nodes are the functions SG() on readings that yield distinct
values under �q (in this simple example, �q({r1}) < · · · < �q({r5})), and the
nonleaf nodes are the functions SF(). A synopsis diffusion algorithm is ODI-
correct if for any aggregation DAG, the resulting synopsis is identical to the
synopsis s produced by the canonical left-deep tree.

More simply, regardless of how SG() and SF() are applied (i.e., regardless of
the redundancy arising from multipath routing), the resulting synopsis is the
same as when each distinct value is accounted for only once in s. We use a left-
deep tree for our canonical representation because it lends itself to an important
connection with traditional data streams (as discussed in Section 3.3).

3If there are multiple distinct ri ∈ SL(s) such that �q({ri}) = {vi}, the same s must be computed
regardless of which ri is selected.
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3.2.1 A Simple Test for ODI-Correctness. The definition of ODI-correctness
captures the overall goal of order- and duplicate-insensitivity. However, it is not
immediately useful for designing synopsis diffusion algorithms because verify-
ing correctness using this definition would entail considering the unbounded
number of ways that SG() and SF() can be applied to a set of sensor readings
and comparing each against the synopsis produced by the canonical tree.

Thus, a key contribution of this paper is in deriving the following simple test
for ODI-correctness. There are four properties to check to complete the test.

—Property P1. SG() preserves duplicates: ∀r1, r2 ∈ R : �q({r1}) = �q({r2})
implies SG(r1) = SG(r2). That is, if two readings are considered duplicates
(by �q) then the same synopsis is generated.

—Property P2. SF() is commutative: ∀s1, s2 ∈ S : SF(s1, s2) = SF(s2, s1).
—Property P3. SF() is associative: ∀s1, s2, s3 ∈ S: SF(s1, SF(s2, s3)) =

SF(SF(s1, s2), s3).
—Property P4. SF() is same-synopsis idempotent: ∀s ∈ S : SF(s, s) = s.

While the first three properties are perhaps intuitive, note that the fourth
property is much weaker than the duplicate-insensitivity property required for
ODI-correctness. In particular, property P4 refers only to what happens when
SF() is applied to the exact same synopsis for both its arguments. It says nothing
about what happens when SF() is applied to differing arguments that come from
overlapping sets of sensor readings.4

Given the simplicity of properties P1–P4, it is surprising that they charac-
terize ODI-correctness. The next theorem shows that indeed this is the case.

THEOREM 1. Properties P1–P4 are necessary and sufficient properties for
ODI-correctness.

The proof is given in Appendix A.1.
We illustrate how these properties can be used to prove the ODI-correctness

of a synopsis diffusion algorithm by revisiting the Count algorithm that esti-
mates the number of sensor nodes in the network.

CLAIM 1. The Count algorithm in Section 2.2 is ODI-correct.

PROOF. Consider a projection operator �q that maps a set of sensor readings
to the corresponding sensor ids. In the Count algorithm, SF(s, s′) is the Boolean
OR of the bit vectors s and s′. Since Boolean OR is commutative and associative,
so is SF(). Next, observe that �q({r1}) = �q({r2}) if and only if r1 and r2 have
the same sensor id and hence are the same reading. Thus SG(r1) = SG(r2).5

4For example, consider the SF() function that takes two numbers x and y and returns their average.
This satisfies property P4, because the average of x and x equals x. However, the function cannot
be used to compute a duplicate-insensitive average of all the sensor readings. For example, if the
readings are 2, 4, and 36, we have SF(SF(2, 4), SF(2, 36)) = 11 but (SF(2, 36), SF(4, 36)) = 19.5
(and the exact average is 14).
5We assume here that SG is applied only once to a sensor reading. The case where SG can be
redundantly applied can be (provably) handled by using the exponential hash function of FM,
instead of the simpler CT-based generation.
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Finally, SF(s, s) is the Boolean OR of the bit vector s with itself, which equals
s. Therefore, properties P1–P4 hold, so by Theorem 1, the algorithm is ODI-
correct.

Note that the SE() function did not factor into the considerations of ODI-
correctness. ODI-correctness only shows that SE() will see the same synopsis as
the left-deep tree. The accuracy of the approximate answer, on the other hand,
depends on the accuracy of applying SE() to this synopsis. Clever algorithms
are still required to get provably good approximations, although the task has
been simplified to being able to show (1) the ODI-correctness of SG() and SF(),
and (2) the accuracy of SE() when applied to synopses from left-deep trees.

3.2.2 Algebraic Structure. We begin with the following corollary of Theo-
rem 1.

COROLLARY 1. Consider an ODI-correct synopsis diffusion algorithm with
functions SG() and SF(). The set S of synopsis generated by SG() together with
the binary function SF() forms a semilattice structure.

A semilattice [Davey and Priestley 2002] is an algebraic structure with the
property that for every two elements in the structure there is an element that
is their least upper bound. The function SF() is essentially the join operator in
lattice terminology; and, therefore,

if z = SF(x, y) then SF(x, z) = z and SF( y , z) = z. (2)

An example of a semilattice is the fixed size bit-vectors used in the Count
algorithm with the Boolean OR function. The top of the lattice is the all 1’s bit-
vector, the bottom is the all 0’s bit-vector, and for any two bit-vectors x and y , if x
OR y = z, then x OR z = z and y OR z = z. Corollary 1 follows immediately from
Theorem 1 because it is well known that a commutative, associative, idempotent
binary function on a set forms a semilattice [Davey and Priestley 2002].

3.2.3 Implications. The semilattice structure of ODI synopses and the SF()
function has an attractive practical implication in the context of ad hoc wire-
less sensor networks. In such networks, the underlying routing topology needs
to be continuously adapted to cope with unpredictable node and communica-
tion failures. Using explicit acknowledgments for this purpose wastes consid-
erable energy. A common solution in ad hoc wireless networks is to use implicit
acknowledgments [Johnson and Maltz 1996] to monitor communication fail-
ures. Each node u sending to u′ snoops the subsequent broadcast from u′ to see
if u’s message was indeed forwarded (and, therefore, was previously received)
by u′. However, no known approaches could support implicit acknowledgments
as part of in-network aggregation. Consider, for example, computing the Sum
with the TAG protocol. If u sends the value x to u′, and later overhears u′ trans-
mitting some value z ≥ x, there can be two possibilities: either u′ has heard
from u and has included x in z, or u′ has not heard from u6 and z is the sum of

6Because wireless communication can be asymmetric, u may hear from u′ even if u′ does not hear
from u.

ACM Transactions on Sensor Networks, Vol. 4, No. 2, Article 7, Publication date: March 2008.



7:14 • S. Nath et al.

the values u′ heard from its other children. Thus u has no way of determining
whether transmission through u′ is reliable.

The use of ODI synopses provides an implicit acknowledgment mechanism
and avoids the effect of this crucial problem. By (2) above, if a node u transmits
the synopsis x and later overhears some parent node u′ transmitting a synopsis
z such that SF(x, z) = z, it can infer that its synopsis has been effectively
included into the synopsis z of that parent.7 Otherwise, it can infer that its
message to that parent has been lost. Thus, overhearing a synopsis z = SF(x, z)
acts as an implicit acknowledgment for the node u. On inferring message loss,
a sensor can retransmit its message or adapt the topology accordingly (e.g.,
switch its parent in a Tree topology or change its level in a Rings topology).

3.3 Error Bounds of Approximate Answers

Using synopses may provide only an approximate answer to certain queries. In
fact, there are two distinct sources of errors in the final answers computed by a
synopsis diffusion algorithm A. The first one is the communication error, which
is defined as the fraction of sensor readings not accounted for in A’s answer in
a given epoch (i.e., 1 minus the percent contributing). This error is introduced
by the underlying routing scheme; it occurs when some of the sensors have no
failure-free propagation paths to the querying node. The second source of error
is the approximation error, which is defined as the relative error of the answer
computed by A with respect to the answer computed by a corresponding exact
algorithm using all the readings accounted for in A’s final answer. This error is
introduced by the SG(), SF(), and SE() functions.

We argue that with a reasonably dense deployment (e.g., each node having
two to three neighbors toward the querying node) and a sufficiently robust rout-
ing scheme, the communication error can be made negligible. We illustrate this
using a simple analysis. Suppose the underlying multipath routing constructs
a DAG G rooted at the querying node. We consider a regular DAG of height
h where each node at level i, 1 ≤ i ≤ h, has k neighbors at level (i − 1) to
transmit its synopses toward the querying node. For simplicity of the analysis,
assume that level i has di nodes, where d is some constant. Also assume for this
analysis that message losses occur independently at random with probability
p. Then the number of sensor readings N that can reach the querying node is
given by N ≥ ∑h

i=0(1− pk)id i = dh+1(1−pk )h+1−1
d (1−pk )−1 . Thus the overall communication

error is upper bounded by approximately 1−(1− pk)h. To make it more concrete,
assume that p = 0.1, h = 10. Then, with k = 1 (i.e., a tree topology), the error is
around 0.65, while it is less than 0.1 and 0.01 for k = 2 and k = 3, respectively.
Hence, by increasing the number of neighbors to transmit synopses toward the
querying node (i.e., increasing the redundancy of the underlying message rout-
ing), through denser sensor deployment, if necessary, the communication error
can be made insignificant.

7We say it is effectively included because the condition SF(x, z) = z does not precisely imply that
the transmission from u has been received by u′. Rather, it implies that even if the transmission
were lost, the loss had no effect on the synopsis transmitted by u′ (because it happened to have
been compensated by the synopses from other children of u′).
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Thus, with a robust routing topology, the main source of error in the result
computed by a synopsis diffusion algorithm is the approximation error. Next,
we summarize a generic framework to analyze this approximation error.

Traditionally, the error properties of approximation algorithms are analyzed
in a centralized model where the algorithms are applied at a central place (e.g.,
the querying node) where all the values are first collected. For example, data
stream algorithms [Babcock et al. 2002] use this model. However, synopsis diffu-
sion presents a distributed model where the SG() and SF() functions are applied
in the distributed set of sensors. The following theorem shows the equivalence
of these two models for an ODI-correct synopsis diffusion algorithm.

THEOREM 2. The answer computed by an ODI-correct synopsis diffusion al-
gorithm is the same as that computed by first collecting the values that can reach
the querying node through at least one failure-free propagation path and then
applying the SG(), SF(), and SE() functions on them.

PROOF. (sketch) Consider an arbitrary instance of synopsis diffusion
aggregation. By ODI-correctness, the corresponding aggregation DAG (e.g.,
Figure 3(a)) can be reduced to a canonical left-deep tree (e.g., Figure 3(b)). This
left-deep tree can be viewed as processing a data stream of sensor readings at a
centralized place: to each new stream value, we first apply SG and then apply
SF with the current stream synopsis.

Hence, the final result computed by a synopsis diffusion algorithm has the
following semantics: (1) the final answer includes all the values that can reach
the querying node through at least one failure-free propagation path, and (2)
the result is the same as that found by applying the function SE on the output
of a centralized data stream algorithm using SG and SF as indicated above.

Theorem 2 shows that any approximation error guarantees provided for the
well-studied centralized data stream scenario immediately apply to a synopsis
diffusion algorithm, as long as the data stream synopsis is ODI-correct. Thus,
we can effectively leverage existing data stream error analysis, as illustrated
in the following claim, which is an immediate corollary of Theorem 2.

CLAIM 2. The Count algorithm in Section 2.2 has the same approximation
error guarantees as Flajolet-Martin’s (FM) distinct count algorithm [Flajolet
and Martin 1985].

The precise error guarantees depend on the number of independent bit-
vectors used per synopsis. See Considine et al. [2004], Flajolet and Martin
[1985], and Gibbons [2007] for further details.

4. EXAMPLE AGGREGATES WITH ODI-CORRECT ALGORITHMS

Many aggregates have ODI-correct synopsis diffusion algorithms, as shown
in Table II. Maximum and Minimum are trivial. Count was discussed in
Section 2.2. Count Distinct can be done using a trivial adaption of Flajolet
and Martin’s algorithm (FM) [Flajolet and Martin 1985], along the lines of the
Count algorithm. This section presents new ODI-correct synopsis diffusion al-
gorithms for some additional important aggregates, as listed in the table.
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Table II. Summary of ODI-Correct Algorithms Discussed in This Article

Aggregate Notes
Maximum, Minimum Trivial
Count, Count Distinct See Section 2.2
Sum, Average, Standard Deviation, Second Moment See Section 4.1
Uniform Sample see Section 4.2
Mean, kth Statistical Moments See Section 4.2
Medium, Quantiles See Section 4.2
Frequent Items See Section 4.3
Range Aggregates, Inner Product Queries See Section 4.4

4.1 Sum

An approximate sum of (nonnegative integer) sensor readings can be computed
using a simple generalization of the Approximate Count algorithm: If the sensor
node v has the value valv to contribute to the final answer, it pretends to be a
collection of valv distinct nodes. Specifically, for SG() each node v outputs a bit
vector of length k′ (where k′ is sufficiently large to hold the maximum sum) with
the following bits set: for each of valv times, perform CT(k′) and set the returned
bit. SF() and SE() are the same as in the Approximate Count algorithm.

However, running CT() for valv times, as in the above algorithm, may con-
sume a large amount of energy when valv is large. Instead, we give below an
alternative algorithm that avoids this overhead. This algorithm is adapted from
a variant of FM that instead of returning 2i−1/0.77351, where i is the index of
the lowest-order 0-bit, returns 2 j , where j is the index of the highest-order 1-
bit [Alon et al. 1999]. Because the algorithm keeps track of only the maximum
bit set, the synopsis can be smaller.

—Synopsis. Assume that the values we wish to add are integers in the range
[0. .X ]. Because the sum can be bounded by nX , where n is an upper bound
on the number of nodes in the network, the synopsis is an integer in the
range [1. . log(nX )], that is, its size is log log(nX ) bits.

—SG(). For node v, select a random number xv in [0, 1] and output − log2(1 −
x1/valv

v )�.
—SF(s, s′). Output max(s, s′).
— SE(s). Output 2s−1.

The intuition behind the SG() function is as follows. The goal is to mimic
the process where, for each of valv times, CT(k′) is done and the returned bit is
set. The probability that the ith bit will be the maximum bit set after m trials
(m = valv in this case) equals the probability that all m trials return the ith
bit or less minus the probability that all m trials return the (i−1)th bit or less,
that is, (1 − 2−i)m − (1 − 2−(i−1))m. To select a maximum bit set according to this
probability distribution, SG() selects a random number x and finds the smallest
integer i ≥ 1 such that x ≤ (1−2−i)m. Solving for i, we seek the smallest integer
i such that i ≥ − log2(1 − x1/m), namely, − log2(1 − x1/m)�.

As with approximate Count, the variance of the approximation can be de-
creased by maintaining multiple independent synopses and having SE() output
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2s̄, where s̄ is the average of the indices of the highest-order 1-bits [Alon et al.
1999].

Concurrent with our work, Considine et al. [2004] developed an energy-
efficient variant of the approximate Sum algorithm based on the original FM.
Note that the FM algorithm they used is somewhat more accurate (i.e., has
lower variance) in practice than the [Alon et al. 1999] variant we use. Intu-
itively, this is because the lowest-order 0-bit (as in FM) is “supported” by all
the lower order bits being set, whereas the highest-order 1-bit (as in Alon et al.
[1999]) can be the result of a single random outlier. Thus, their algorithm is
somewhat more accurate than ours for the same amount of energy, and so we
use their algorithm in our Approximate Sum experiments in Section 6.

4.1.1 Aggregates Computed from Sum. Average, Standard Deviation, and
Second Moment can be computed by applying the Sum algorithm (and the Count
algorithm) over suitably defined values [Considine et al. 2004]. For example,
Average can be computed by applying both the Sum and the Count algorithms,
and then dividing.

4.2 Uniform Sample of Sensor Readings

Suppose each node u has a value valu. Our goal is to compute a uniform sample of
a given size K of the values occurring in all the nodes in the network. Because
of message loss, however, one cannot guarantee a uniform sample of all the
nodes. Instead, our algorithm outputs a uniform sample of all the contributing
nodes, that is, of all the nodes with failure-free propagation paths (regardless
of whether they are selected for the sample). Note that the set of contributing
nodes represents a very high percentage of the nodes, given reasonably dense
deployments. Recall from Section 3.3 that we expect more than 99% of the nodes
to contribute if each node has just two neighbors towards the querying node,
and the percentage increases rapidly with additional neighbors. Therefore, as
demonstrated by the experiments in Section 6.9, even when considering all the
nodes (not just the contributing nodes), our algorithm outputs a reasonable
approximation of a uniform sample. The components of our algorithm are as
follows:

—Synopsis. A sample of size K of 〈value, random number, sensor id〉 tuples.
(Initially, it will have fewer than K tuples, until there are at least K nodes
contributing to the synopsis.)

—SG(). At node u, output the tuple 〈valu, ru, idu〉, where idu is the sensor id for
node u, and ru is a uniform random number within the range [0, 1].

—SF(s, s′). From all the tuples in s ∪ s′, output the K tuples 〈vali, ri, idi〉 with
the K largest ri values. If there are fewer than K tuples in s∪s′, output them
all.

—SE(s). Output the set of values vali in s.

Because the SG() function labels each value with a uniform random number
and thus places it in a random position in the global ordering of all the values
in the network, selecting the K largest positions results in a uniform sample of
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the values from contributing nodes. The (duplicate-removing) union operation
in SF ensures that the synopsis accounts for a given node’s value at most once.8

Note that traditional sampling procedures [Kostic et al. 2003] are ill suited
for multipath routing because they are duplicate-sensitive. This extra duplica-
tion results in samples that are far from uniform (even when considering only
the contributing nodes).

4.2.1 Aggregates Computed from Uniform Samples. Many useful holistic
aggregates, for which there are no efficient and exact in-network aggregation
algorithms, can be approximated from a uniform sample computed using the
previous algorithm. For example, given the sensor values val1, val2, . . . , valn,
the kth Statistical Moment μk = 1

n

∑n
i=1 vali

k (e.g., μ1 is the Mean) and the
kth percentile/quantile value for 0 < k < 100 (e.g., k = 50 is the Median) can
be approximated with ε additive error9 and with probability 1 − δ by using a
sample of size O( 1

ε2 log 1
δ
) [Bar-Yossef et al. 2001]. Given the sample S of size

O( 1
ε2 log 1

δ
), the kth percentile of the sensor values is estimated by selecting the

kth percentile value in S. Thus our random sampling algorithm provides an
efficient way to estimate these holistic aggregates.

4.3 Frequent Items

The goal of this algorithm is to return all items occurring at least T times, for
a given threshold T , and their counts (both approximated). It uses the CT()
function from the Count algorithm described in Section 2.

—Synopsis. A set of (value, weight) pairs, where the values are unique and the
weights are at least log(T ).

—SG(). At node u, compute CT(k) where k > log(n) and n is an upper bound
on the total number of items; call this the weight of valu. If the weight is at
least log(T ), output (valu, weight). Otherwise, output the empty set.

—SF(s, s′). For each distinct value v in s ∪ s′, discard all but the pair (v, weight)
with maximum weight for that value. Then output the remaining pairs.

— SE(s). For each (value, weight) pair in s, output (value, 2weight) as a frequent
value and its approximate count.

Essentially, the algorithm determines the frequency of an item by running
an ODI-correct Count algorithm for each value. The counting is done using an
Alon et al. variant [Alon et al. 1999] of Flajolet-Martin’s [1985] algorithm (FM).
In particular, we estimate the number of distinct occurrences of a value by keep-
ing track of the highest outcome of CT(k) for that value, and then estimating
the number of such distinct occurrences by taking 2 to the power of that high-
est outcome. It follows from Equation (1) in Section 2 that a value occurring
at least T times is expected to have at least one of its calls to CT() return at
least log(T ). Thus the algorithm only tracks weights that are at least log(T ).

8Note that, in practice, idu need not be included in the synopsis, because equality in the random
id ru can effectively detect duplicates. Also, the range need not be [0, 1], for example, an integer
range suffices as long as the probability of random number collisions is small.
9For kth percentile aggregates, the error is with respect to the rank of the value not its magnitude.
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Note that because global popularity is determined by the maximum weight per
value (as opposed to, say, by summing up estimated local popularities), there
are no issues with globally popular items being overlooked because they are
not locally popular.

To reduce the number of false positives and false negatives, multiple inde-
pendent instances of the SG() can be run at each node. The synopsis consists of
one set of pairs for each instance, SF() is applied to each instance independently,
and SE() outputs values that appear in at least half the sets.

Note that the size of the synopsis increases with the number of frequent
items, and hence is nonincreasing in T . Thus, it is necessary to select T suffi-
ciently large in order to maintain a small synopsis.

4.4 Count-Min Sketch Generation

Cormode and Muthukrishnan [2005] presented a sublinear space data struc-
ture, called a Count-Min Sketch, for summarizing data streams. Let I be the
set of possible item labels. The sketch is a two-dimensional count array A,
with each row r having a random pairwise independent hash function hr that
maps elements in I uniformly to columns in A. On arrival of an item i ∈ I
with count c, for each row j of A, A[ j , h j (i)] is incremented by c. Cormode and
Muthukrishnan [2005] showed that this sketch can be used to estimate many
aggregates with good time and space complexity, such as point queries (what is
the sum of the counts of all items with a given label i?), Range Queries, Inner
Product Queries, Finding Quantiles, Frequent Items, etc.

Although the Count-Min Sketch has been proposed in the context of a single
stream, it can be extended to be used in the synopsis diffusion framework by
replacing the duplicate-sensitive counter of each array cell with an ODI Sum
synopsis from Section 4.1. As our ODI Sum synopsis handles only the sum of
nonnegative integers, we require the counts associated with each node to be
nonnegative integers. As in Cormode and Muthukrishnan [2005], the goal is to
produce an estimate within εN additive error with probability at least 1 − δ,
where N is the sum of all the item counts and ε and δ are arbitrarily chosen
target values between 0 and 1.

—Synopsis. A w × d two-dimensional array of Sum synopses, where w = O( 1
ε
)

and d = O(log(1/δ)).
—SG(). At node u, initialize a w × d two-dimensional array Au to all zeros.

Let labelu and valu be the label and count associated with the node u. Let
yu = SGSum(), where SGSum is the generation function for Sum synopses
(which uses valu). For each row r of Au, store yu in Au[r, hr (labelu)]. (We
assume that each node has the same set of hash functions h1(), . . . , hw().)

—SF(s, s’). For each cell (x, y), output SFSum(sx, y , s′
x, y ), where SFSum is the

fusion function for Sum synopses and sx, y is the cell (x, y) of the synopsis s.
—SE(s). For each cell (x, y), output SESum(sx, y ), where SESum is the evaluation

function for Sum synopses.

The SG() function outputs an array Au for node u that corresponds to the
state of the original Count-Min Sketch after the arrival of a single item with
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label labelu and count valu, except that the count valu in the original sketch
is replaced by the Sum synopsis yu. The SF() function mimics the accumulat-
ing counts of the Count-Min Sketch, again with duplicate-sensitive counters
replaced by ODI Sum synopses. The SE() function converts the Sum synopses
in each cell to estimated sums; call this two-dimensional count array A. Any of
the specific estimation algorithms in Cormode and Muthukrishnan [2005] can
then be applied to A. For example, an estimate for the sum of the counts of all
items with a given label i can be computed by taking the minimum of A[r, hr (i)]
over all rows r. See Cormode and Muthukrishnan [2005] for further details on
the various estimation procedures.

5. ADAPTING THE TOPOLOGY

As mentioned in Section 3.2, the implicit acknowledgments provided by ODI
synopses can readily be exploited to infer when to retransmit a synopsis or to
adapt the routing topology. Using retransmissions expends energy and it delays
query responses because each level in a topology may need to wait for possible
retransmissions before preceding. Thus, we will focus on adapting the topology
when message loss is frequent, hoping that it will reduce loss rate in the long
run. In this section, we show how to modify the Rings topology described in
Section 2.1 to construct a more robust topology, which we call Adaptive Rings.
The basic idea is to let each node decide whether it has sufficiently good con-
nectivity with its current parents, and if not (e.g., due to node failures or long
term changes in link loss rates), assign itself to a different ring so that it gets a
new set of parents. To be assigned to a new ring i, a node simply starts waking
up during the time slot assigned for the ith ring in the epoch. This will auto-
matically give it children in ring i + 1 and parents in ring i − 1; no coordination
is required to change rings (more details in Nath [2005]).

The Adaptive Rings topology decides when and how to adapt the ring
assignments of the nodes as follows. A node x in the ring i uses implicit ac-
knowledgments to keep track of ni−1, the number of times the transmissions
from any node in ring i − 1 has effectively included x ’s synopses in the last k
(an application-defined parameter) epochs. When ni−1 is below some threshold,
x tries to assign itself to a new ring. To do that, it computes nj , the number
of times it overhears the transmissions of any nodes in a nearby ring j for the
last k epochs. Since nodes in different rings transmit at different time slots of
an epoch, x can compute nj by listening during the appropriate time slot. The
node x in ring i then uses the following heuristics:

(1) assigns itself to ring i + 1 with probability p if (i) ni > ni−1, and (ii) ni+1 >

ni−1 and ni+2 > ni;
(2) assigns itself to ring i − 1 with probability p if (i) ni−2 > ni−1 and (ii)

ni−1 > ni+1 and ni−2 > ni.

Intuitively, the heuristics try to assign x to a ring so that it can have a good
number of parent nodes from the neighboring ring to forward its synopses
toward the base station at ring 0. For example, consider the first heuristic above.
Condition (i) ensures that x will now have parents with better connectivity
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Fig. 4. Random placement of 600 sensors in a 20ft × 20ft area and their simulated activity with
a realistic communication model. The querying node is at the center of the deployment area. The
small dots (solid squares) indicate the nodes accounted for (not accounted for, respectively) in the
answer computed in a typical epoch.

after switching rings, and condition (ii) hints that higher rings have smaller
loss rates than lower rings and hence switching to a higher ring is probably
good. Although, condition (ii) makes the switching decision conservative, our
experience shows that it is effective in avoiding repeated switching between
rings. The probabilistic nature of the heuristics avoids synchronous ring tran-
sition of the nodes and provides better stability of the topology. In our evaluation
in Section 6, we use k = 10 and p = 0.5.

ODI synopses play two key roles in this adaptation. First, implicit acknowl-
edgments are used to maintain ni−1, providing link quality estimates without
the overheads of acknowledgment messages. Second, nodes can change rings at
any time with minimal or no concern that values will be lost or double-counted.

We make another change to increase the robustness of Adaptive Rings. Be-
cause the nodes in ring 1 have only one node (the querying node) receiving
their transmissions, ring 1’s transmissions are more susceptible to transmission
losses. In other words, ring 1 cannot use multipath routing. To cope with this,
we suggest (1) using multiple querying nodes (in ring 0) that form a mesh and
combine the aggregated value at the end of each epoch, or (2) making nodes in
ring 1 transmit multiple times if the implicit acknowledgment from the query-
ing node (which broadcasts the final synopsis at the end of each epoch) implies
that it has not received a synopsis. The latter approach, although slightly more
power consuming, uses the traditional model of having a single querying node;
we use this approach in our evaluation (where each node in ring 1 transmits
twice).

Figure 4 shows the effectiveness of the adaptation with a snapshot (from the
querying node’s point of view) of a single epoch. It graphically shows that the
percent contributing with Rings (Figure 4(a)), which is already significantly
higher than in a tree-based scheme, can be further improved by having ring 1
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nodes transmit twice (Figure 4(b)). (The effectiveness of Adaptive Rings’ heuris-
tic for topology adaptation is highlighted in Section 6.6.)

6. EVALUATION

In this section, we evaluate our synopsis diffusion scheme and compare it with
existing schemes through simulation. We present the accuracy of a few synopsis
diffusion algorithms running over the Adaptive Rings scheme and show the
sensitivity of Adaptive Rings to different network parameters (e.g., loss rate,
node failures, node density, node mobility).

Polastre et al. [2005] have recently implemented our synopsis diffusion
scheme on top of the sensornet protocol (SP) and evaluated it on several plat-
forms including mica2 and telos. Their evaluation shows that synopsis diffusion,
when implemented on SP, has very small code size and memory footprint. More-
over, its flexibility in routing makes it easy to piggy-back synopses with other
(nonaggregation) messages, providing further energy savings. These results
complement the results we present here that study the energy consumption
and accuracy of various aggregates.

6.1 Methodology

6.1.1 Topology. To evaluate the performance of synopsis diffusion and dif-
ferent aggregation topologies, we implemented the algorithms within the TAG
simulator used in Madden et al. [2002a]. In our simulations unless otherwise
noted, we collect a sum aggregate on a deployment of 600 sensors placed ran-
domly in a 20ft × 20ft area. The querying node is at the center of the deployment
area. Unless otherwise stated, sensors report their node-ids, which are assigned
sequentially from 1 to 600, as their sensor readings.

6.1.2 Aggregation Schemes. We simulate five different aggregation
schemes: TAG (TAG’s standard tree-based approach), TAG2 (the TAG approach
with value-splitting among two parents),10 GOSSIP (gossip-based aggregation
described in Kempe et al. [2003]), RINGS (the synopsis diffusion (SD) algorithm
over the Rings topology), ADAPTIVE RINGS (SD over the scheme described in Sec-
tion 5, called A.Rings in the graphs), and FLOOD. FLOOD uses SD over a flat
topology—at the beginning of each epoch, each node broadcasts its synopsis to
all of its neighbors, and at the end of each epoch, each node updates its own
synopsis by applying SF() on the synopses received from its neighbors. To en-
sure that all nodes contribute to the synopsis at the querying node, FLOOD runs
for D + 1 epochs, where D is the maximum distance of any node of the network
from the querying node.

In each simulation, we collect results over 500 epochs—we collect a single
aggregate value each epoch. We begin data collection only after the underlying
aggregation topologies for both synopsis diffusion and TAG are stable.

10We do not consider TAG-k where each node splits its value to k > 2 parents, since our experi-
mental results, described later, show that TAG-k has the same average error as TAG. This is also
formally shown in Madden et al. [2002a].
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6.1.3 Message Size. We use 48-byte messages, as used by the TinyDB sys-
tem. Each sum synopsis bit-vector uses 32 bits. However, in transmitting multi-
ple bit-vectors, we reduce the size of the synopsis by interleaving the bit-vectors
and applying run-length encoding [Palmer et al. 2002]. In our experiments for
computing sum, we used twenty 32-bit synopses that when compressed take
around 14 bytes on average. Two sets of sum synopses (or one set of average
synopses that computes both the sum and the count) fit in a single TinyDB
packet along with headers and extra room to handle the variation in the com-
pression ratio.

6.1.4 Transmission Model. The TAG simulator supports a realistic trans-
mission loss model based on measurements of the wireless network interfaces in
the Berkeley MICA motes. This loss model, described in Madden et al. [2002a],
assigns loss probability of links based on the distance between the transmitter
and receiver as follows: the loss probabilities are 0.05, 0.24, 0.4, 0.57, 0.92, and
0.983 within the range 1, 2, 3, 4, 5, and 6 ft, respectively, and 1.0 outside the
range of 6 ft.11 Note that these are message level loss probabilities; the sim-
ulator does not model bit-level loss probability as TOSSIM [Levis et al. 2003]
does. Like many real systems, we do not assume link level retransmission or
any reliable communication mechanism.

6.1.5 Accuracy. To quantify the performance of the schemes, we use the

relative root mean square (RMS) error—defined as 1
V

√∑T
t=1(Vt − V )2/T , where

V is the actual value and Vt is the aggregate computed at time t. The closer
this value is to zero, the closer the aggregate is to the actual value.

6.1.6 Power Consumption. There are two main sources of power consump-
tion on the sensor hardware: computation and communication. To enable our
code to execute on actual sensor hardware, we have implemented the synopsis
diffusion algorithm for computing sum and some other aggregates within the
TinyOS and the TinyDB environment. By analyzing the binary code compiled
by TinyOS and using the data-sheet of the mote hardware [Atmel AVR Micro-
controller Datasheet 2004], we found that our code uses at most a few hundred
additional CPU cycles in comparison to the TAG implementation. This differ-
ence was insignificant in both the overall power budget as well as in the relative
communication power consumption of the different schemes.12 Therefore, we
choose to simply use the network communication power consumption to com-
pare the performance of different schemes. We model the communication power
consumption according to the real measurement numbers reported in Madden
et al. [2003].

6.2 Comparison of Aggregation Schemes

Table III shows how different schemes perform in computing sum with a ran-
dom node placement and the realistic network loss model described above. We

11Such a high loss rate is common in practice [Zhao and Govindan 2003; Zhao et al. 2003].
12Measurements [Madden et al. 2003] indicate that 1 bit of transmission (or reception) is equivalent
to approximately 1000 cycles of computation.
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Table III. Comparison of Aggregation Schemes

Scheme % Nodes Error (uniform) Error (skewed) Error (Gaussian)
TAG < 15% 0.87 0.99 0.94
TAG2 N/A 0.85 0.98 0.92
GOSSIP N/A 0.91 0.99 0.93
RINGS 65% 0.33 0.19 0.21
ADAPT. RINGS 95% 0.15 0.16 0.15
FLOOD ≈ 100% 0.13 0.13 0.13

consider three different distributions of data reported by sensors and the last
three columns of the table show the average RMS errors of the computed ag-
gregates for these different distributions. Column 3 considers a scenario where
each sensor reports its node-id as its value. Thus, each value between 1 and 600
occurs exactly once, in a randomly placed node. Column 4 considers a scenario
where each sensor reports a value inversely proportional to the square of its
distance from the querying node at the center, emulating the intensity readings
of a radiation source at the center (as in Figure 1). Finally, in Column 5, sensor
data are distributed according to a Gaussian distribution with mean 600 and
standard deviation 200. At a high level, the table shows that both TAG and
TAG2 incur large RMS error because only a small fraction of the nodes report
to the querying node.13 RINGS, which is as energy efficient as TAG and TAG2, is
much more robust than these two. Note that GOSSIP performs poorly too. This
happens because under unreliable communication GOSSIP loses its “mass” and
results in values smaller than actuals. It also shows that the performance of
ADAPTIVE RINGS is significantly better than RINGS and is very close to FLOOD

under this realistic setup. Note that the errors in FLOOD come from only the
approximation algorithm.

The effectiveness of synopsis diffusion, as shown above, comes from its
replicating aggregate information via broadcast, which makes it extremely ro-
bust under communication failures. With synopsis diffusion, a node sends the
same information to multiple neighbors and it is sufficient if only one of the
neighbors receive the information. In contrast, with techniques like TAG2 and
GOSSIP, a node distributes its aggregate information and send partial informa-
tion through multiple neighbors. Even when communication fails with only one
of the neighbors, partial information sent to it is lost, resulting in inaccurate
answer.

Note that the poor performance of TAG and GOSSIP comes due to unreliable
communication. As pointed out in Section 3.3, there are two sources of error:
communication error (reducing the percent contributing) and approximation
error (from using synopses). Because TAG and GOSSIP do not incur this latter
source of error, they can be more accurate than ADAPTIVE RINGS whenever the
communication error is very small (e.g., due to reliable communication) or lost
messages have little impact (e.g., when computing Average over non-skewed
data). However, such scenarios are not the common case.

Because both TAG and TAG2 provide similar average RMS errors, we re-
port only the performance of TAG in the rest of the experiments. We also omit

13This is consistent with the theoretical and experimental results reported in Madden et al. [2002a].
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Fig. 5. Impact of packet loss on aggregation schemes.

GOSSIP because of its high error under unreliable communication. Note that
some gossip-based aggregation protocols [Gupta et al. 2001] are more robust to
communication failures, but they require additional mechanisms (as discussed
in Section 1.1) and therefore do not present fair comparison points with Syn-
opsis Diffusion.

6.3 Effect of Communication Losses

In this set of experiments, we use a simpler loss model in which each packet
is dropped with a fixed probability. Figure 5(a) shows the impact of changing
this loss probability on the accuracy of the different schemes. For each loss rate,
the plot shows the average RMS error as well as the 95% confidence interval
across all the trials. Even with loss rates as low as 10%, the RMS error for
TAG is 0.36, whereas the RMS errors for RINGS, ADAPTIVE RINGS, and FLOOD are
only around 0.15. More importantly, ADAPTIVE RINGS perform as well as FLOOD

even when the loss rate is as high as 60%.14 We also note that the performance
of TAG degrades much more quickly with increasing loss rate than any of the
synopsis diffusion approaches. From Figure 5(b), we can see that this degrada-
tion is directly related to the fact that the readings of fewer and fewer nodes
are incorporated into the reported aggregate. In addition, we can see that the
impact of excluding sensor nodes dominates the impact of any approximation
errors.

6.4 Effect of Deployment Densities

The density of sensors in a deployed region influences the loss rates observed
as well as the topology used to aggregate the sensor readings. To evaluate
the impact of sensor density, we vary the number of sensors within a fixed
deployment region. We employ the realistic packet loss model described earlier.

Figure 6(a) shows the impact of changes in density on the accuracy of
TAG, RINGS, ADAPTIVE RINGS, and FLOOD. As the network becomes sparser, the

14At high loss rate, FLOOD fails to provide 100% contributing nodes because the flood runs for only
a limited number of epochs.
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Fig. 6. Impact of sensor density on aggregation schemes.

aggregation schemes are forced to use longer, more error-prone links. This has
little impact on FLOOD, which has a high degree of redundancy in its data collec-
tion. RINGS and ADAPTIVE RINGS, having limited redundancy compared to FLOOD,
perform worse with very low sensor density. However, in reasonably dense net-
works, ADAPTIVE RINGS performs as well as FLOOD due to the large amount of
redundancy it can take advantage of. Sparse networks surprisingly also have
little impact on TAG. TAG prefers to construct short trees because deep trees
combined with packet losses result in very poor performance. As a result, the
average parent-child link distance does not change significantly with density.
This results in a similar percentage of sensors readings being omitted from the
aggregate and, therefore, similar error performance regardless of density.

The added redundancy of FLOOD and ADAPTIVE RINGS comes at a cost in terms
of overhead. Figure 6(b) plots the impact of density on communication power
consumption (the breakdown of the power consumed to transmit and receive
messages can be found in Nath [2005]). Because the nodes in TAG and RINGS

remain awake for receiving messages for roughly the same amount of time
[Madden et al. 2002a], and roughly the same number of transmissions occur in
both schemes, the nodes’ network interfaces in both schemes receive approx-
imately the same number of messages. Thus, both TAG and RINGS have the
optimal overhead for transmission power. ADAPTIVE RINGS consumes slightly
more transmission energy due to the use of redundant transmissions in ring
1 (see Section 5) and the reception of the implicit acknowledgment. Note that,
however, the RINGS and ADAPTIVE RINGS approach force each node to process all
of the received packets, in contrast to a TAG node processing a smaller subset
of these message per epoch. Fortunately, the cost of processing a message is far
less than receiving the message. Finally, as expected, FLOOD has the highest
overhead for transmission and reception among the schemes.

In addition to density, the rough shape of a sensor deployment can affect
the performance of the different aggregation schemes. We have also performed
experiments evaluating the impact of deployment shape. Specifically, we var-
ied the width and height of the rectangular deployment area while keeping
the size and the number of sensors constant. Our results show that while the
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performance of TAG degrades as the diameter of the network increases (i.e., the
height of the tree increases), the performance of RINGS degrades only slightly.
The details can be found in Nath [2005].

6.5 Effect of Asymmetric Links

Asymmetric links are common in real wireless sensor networks and cause sig-
nificant problems for topology creation. The problems arise from the fact that,
if node u1 hears from node u2, it may choose node u2 to be its parent. However,
with asymmetric links, there is no guarantee that node u2 hears messages
from node u1. To see the impact of this factor, we model asymmetric links in our
simulation based on realistic measurements [Zhao and Govindan 2003]. With
such links, the accuracy of TAG drops by 15% and Rings by 10%. The implicit
acknowledgments of synopsis diffusion help avoid this problem by identifying
asymmetric links. As a result, the performance of Adaptive Rings degrades only
slightly (< 3%) with such links.

6.6 Effect of Correlated Node Failures

Figure 7 shows the effectiveness of ADAPTIVE RINGS using a scenario where, at
time t = 300, we disable all the sensors within a 6ft × 8ft rectangular region of
the 20ft × 20ft deployment area, which causes a loss of 13% of the total sensors.
To separate out the effects of two key components, nodes in ring 1 transmitting
twice and all nodes adapting their rings to cope with the network dynamics,
we compare ADAPTIVE RINGS with a scheme called RINGS2. RINGS2 is basically
the RINGS scheme with the nodes in ring 1 sending their synopses twice (i.e.,
ADAPTIVE RINGS without the topology adaptation).

As the graph shows, ADAPTIVE RINGS performs better (with higher percentage
nodes and lower variance) than the other schemes even when there is no drastic
network dynamics (i.e., t < 300). RINGS2 performs better than RINGS showing
the effectiveness of having the nodes in ring 1 send twice. Immediately after
t = 300, all the schemes suffer because the dead sensors break all the paths
to the querying node from a significant portion of the live sensors. However,
ADAPTIVE RINGS gradually adapts its routing around the dead sensors and, thus,

ACM Transactions on Sensor Networks, Vol. 4, No. 2, Article 7, Publication date: March 2008.



7:28 • S. Nath et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

R
M

S
 E

rr
o

r

Speed(Ft/Epoch)

TAG
Rings

A.Rings
Flood

Fig. 8. Node mobility.

lets almost all the live sensors communicate again with the querying node. In
contrast, in RINGS2, 12% of the nodes that could contribute to the computed
aggregate before t = 300 fail to do so after t = 300. The convergence time
of ADAPTIVE RINGS after t = 300 depends on the parameters of the adaptation
heuristic. This result shows the contributions of both the ring adaptation and
ring 1’s retransmissions to the robustness of the ADAPTIVE RINGS scheme.

We have observed a similar result in scenarios where a large number of
randomly chosen sensors fail within a short period of time (details are in Nath
[2005]).

6.7 Effect of Mobile Sensors

Sensors may be mobile for a number of reasons. They may be deployed on mobile
objects (e.g., Robots), or they may be moved passively by the environment (e.g.,
by wind or water currents). Mobility can cause a number of challenges, including
(1) the same sensor transmitting its readings from multiple locations (creating
duplicate messages), and (2) sensor movement changing the connectivity of the
network. Due to synopsis diffusion’s resilience to losses, duplicate messages,
and connectivity changes, it is able to handle mobility much more easily than
approaches like TAG.

Figure 8 shows the impact of mobility, depicting RMS error as a function
of sensor velocity. For a given experiment with velocity x ft/epoch, each sensor
picks a random direction of motion at each epoch and moves x ft in that direction.
Nodes check for possible adaptation on every fourth epoch.

Because TAG relies on the continued existence of the links that form the
aggregation tree, it must repair the aggregation tree whenever sensor mobil-
ity removes one of these key links. In TAG, whenever a node is disconnected
from its parent, it connects to the next node that it hears from. In addition,
to prevent loops, the disconnected node also disconnects from all its children.
This essentially forces the entire disconnected subtree to be recreated. As a
result, TAG’s performance degrades with higher rates of mobility, as seen in
Figure 8.
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The resilience of synopsis diffusion to connectivity changes depends closely
on the type of propagation used. For example, FLOOD uses no history of past
connectivity to collect results. As a result, changes in connectivity should have
little effect on the behavior of the system or its performance. Note that Figure 8
does indicate some performance degradation. We suspect that this is a result
of the diameter of the network changing as a result of mobility—preventing
the flood from completing. ADAPTIVE RINGS matches FLOOD at low speeds—but
its adaptation is not able to keep up at high speeds. Nevertheless, in all cases
it outperforms RINGS.

6.8 Effect of Synopsis Size

Synopsis diffusion provides the opportunity to select a desired approximation
accuracy based on the affordable energy overhead (as determined by the mes-
sage size). For example, in the approximate sum algorithm a larger synopsis
enables additional independent bit-vectors to be used, reducing the approxi-
mation error.

To see how the relative error of synopsis diffusion changes with the size of
the synopsis, we increase the number of bit-vectors in the sum synopsis (and
hence the total number of bits in the compressed synopsis). Figure 9 shows
the average of the relative errors of the final answer for the realistic loss rate
and for no loss rate. The x-axis of the graph shows the number of bits of the
compressed bit-vectors (we increase the number of bit-vectors by four and report
the length of the compressed synopsis, thus the use of 20 bit-vectors in our other
simulations corresponds to the use of around 100 bits). The graph also shows
the 95% confidence interval of the computed answers. For clarity, such intervals
are shown only for every other point in the plot. The graph shows that both
the average approximation error and the confidence interval can be decreased
significantly by using more bits (i.e., more bit-vectors) in the synopsis.

6.9 Beyond Sum

6.9.1 Uniform Sample. Figure 10 compares the sampling algorithm de-
scribed in Section 4 running over ADAPTIVE RINGS with an existing random
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sampling algorithm known as RanSub [Kostic et al. 2003] running over TAG.
The algorithms compute a sample of size 5, and the graph shows the histograms
of the node ids included in 10,000 samples. Note that RanSub must be run over
a tree topology because its synopsis is not ODI. Moreover, both RanSub and our
sampling algorithm provide a uniform sample when there is no message loss.
However, with a realistic loss model, RanSub with TAG provides a distribu-
tion far from uniform. The Synopsis Diffusion algorithm, using ADAPTIVE RINGS,
approximates a uniform distribution much better than RanSub.

6.9.2 Top-k. We have also Simulated the Synopsis Diffusion algorithm to
find the five most frequent values in the network, where the value of a sensor
is the integer part of its distance from the querying node (this creates a slightly
skewed distribution of the popularity of the data). We used 10 synopses from
which SE() estimates the five most popular items. We quantify the accuracy
of our estimation {x1, . . . , xk} by using the metric relative rank-error (RRE) =
1
k

∑k
i=1(|i − ri|), where ri is the actual rank of xi in the descending order of

frequency of all the unique items. With the realistic loss model and a random
placement of the sensors, our algorithm provides very small (≈ 0.6) relative
rank-error.

6.10 Discussion

Our results have quantified a number of advantages that synopsis diffusion pro-
vides over tree-based aggregation schemes. First, we have shown how synopsis
diffusion reduces answer errors in lossy environments. Second, we have shown
how synopsis diffusion helps address the challenges imposed by node failures.
Finally, we have shown that synopsis diffusion can achieve these gains without
a significant increase in power consumption.

While our measurements have shown that synopsis diffusion is preferable
to tree-based approaches, they may not have made the choice of aggregation
topology as clear. Our comparisons show that the ADAPTIVE RINGS topology, made
possible by implicit acknowledgments, incurs approximately the same overhead
as the RINGS topology while providing much better accuracy/robustness. ADAP-
TIVE RINGS is especially superior in the face of mobility and node failures. The
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tradeoffs between ADAPTIVE RINGS and FLOOD are more subtle. ADAPTIVE RINGS

collects about 90% of the sensor readings in most reasonable settings while
FLOOD collects 100%. However, in practice, one might deploy extra sensors to
compensate for the lost readings and to decrease their number. The signifi-
cantly lower power consumption of ADAPTIVE RINGS would significantly reduce
the frequency of sensors replacement. In situations where deployments are
short-lived, every sensor reading is critical, sensors are sparsely deployed, or
network conditions fluctuate dramatically, FLOOD may be an appropriate choice.
Otherwise, ADAPTIVE RINGS provides a much better set of tradeoffs.

7. RELATED WORK

We discuss related work in two different areas. First we discuss general in-
network aggregation and robustness techniques. Then we place synopsis diffu-
sion in the context of previous streaming scenarios.

7.1 In-Network Aggregation and Robustness

The early approaches for in-network aggregation, including Cougar [Bonnet
et al. 2001], directed diffusion [Intanagonwiwat et al. 2000], and TAG [Madden
et al. 2002a, 2002b, 2003], use a tree topology with unreliable communication,
and hence are not robust against node and link failures. Note that the SG and
SF functions of a Synopsis Diffusion algorithm may be implemented as filters
within these approaches.

We now describe several techniques to make the aggregation process more
robust.

7.1.1 Reliable Communication. One approach to robust aggregation is to
use reliable communication such as RMST (Reliable Multisegment Trans-
port) [Stann and Heidemann 2003] and PSFQ (Pump Slowly Fetch Quickly)
[Wan et al. 2004]). These protocols can mask transient message losses, mak-
ing individual links of the aggregation topology more reliable. For exam-
ple, RMST has been used over directed diffusion for guaranteed delivery of
data, even under high loss rates. However, reliable communication protocols use
extra messages (e.g., acknowledgments, retransmissions) that have high over-
head in terms of energy consumption, channel utilization, and latency [Stann
and Heidemann 2003].

7.1.2 Robust Topology. Another approach to robust aggregation is to use
an aggregation topology more robust than a tree. Gossip-based aggrega-
tion [Boyd et al. 2005; Chen and Pandurangan 2005; Dimakis et al. 2006; Kempe
et al. 2003; Gupta et al. 2001] also uses a robust aggregation topology. In the
approach proposed by Kempe et al., and in its variants [Boyd et al. 2005; Chen
and Pandurangan 2005; Dimakis et al. 2006], each node starts with an initial
value, its mass, depending on the target aggregate function. The whole aggre-
gation process is loosely synchronized. In the beginning of each round, a node
transfers a fraction (e.g., half) of its current mass to a randomly chosen node in
the network. At the end of the round, each node combines its current mass with
the mass it receives from other nodes in that round. In this way, the total mass
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in the network is always conserved. It can be shown that, after O(log(n)) rounds,
the mass of each node in the network converges to the result of the target ag-
gregate function. Although highly robust, this algorithm has some drawbacks
when used in sensor networks. First, to ensure mass conservation, it requires
reliable communication; at least, the sender needs to know whether the message
has been successfully delivered. Second, it needs O(n log(n)) messages, each of
which is to a random other node in the network and hence often needs to be
relayed through multiple nodes to reach its destination. Finally, techniques are
known to compute only a small number of aggregates (e.g., Sum, Average, and
Count); computing more complex aggregates is still an open issue.

A special case of the above mass conservation principle is the value-splitting
technique used in TAG with the goal of improving robustness [Madden et al.
2002a]. The idea is to use a directed acyclic graph (DAG) instead of a tree, and
have each node with accumulated value v send v/k to each of its k parents.
For aggregates such as Count or Sum, this reduces the error resulting from
a single message loss from v to v/k, but the aggregation error remains high
(recall Figure 1 and Table III).

Note that there are many extremely robust gossip-based protocols [Jenkins
et al. 2001; Karp et al. 2000; Vogels et al. 2003] that do not require reliable
communication, but they are designed primarily for information dissemination
and cannot be directly used for in-network aggregation. Gupta et al. [2001]
provided a gossip-based aggregation algorithm that does not require reliable
communication, but it requires expensive mechanisms such as explicit mainte-
nance of a balanced tree, coarse synchronization (for synchronously switching
the nodes between the distinct phases of the algorithm), and (possibly multihop)
communication between random pairs of nodes.

7.1.3 Model-Based Aggregation. Model-based aggregation [Deshpande
et al. 2004; Mukhopadhyay et al. 2004] uses temporal correlation of data to
correct errors due to transient losses in sensor networks. It uses a model of
temporal variation to predict future data. The next observed sensor reading
is compared to the predicted value to assess the likelihood that the observed
reading is erroneous. If the observed value is assessed to be erroneous, the pre-
dicted value is reported instead of the observed value. The model is adjusted
over time based on the observed values. The success of this technique depends
on the feasibility of building a good model of the data. In many cases where
representative sensor data are not available to build an initial model, or when
sensors are supposed to report rare events, such techniques are unlikely to
work. Deshpande et al. [2004] proposed techniques to model sensor data to
improve the energy-efficiency of data acquisition. This class of techniques is
orthogonal to other previously described techniques, and can be used on top of
them to further improve robustness.

7.1.4 Duplicate-Insensitive Synopses. Concurrent to our work, Bawa et al.
[2004] and Considine et al. [2004] independently proposed duplicate-insensitive
approaches for estimating certain aggregates. In the context of peer-to-peer
networks, Bawa et al. studied the semantics of aggregates computed while the
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topology is changing, and presented algorithms to achieve a given target se-
mantics. Considine et al. is the most closely related work to ours. As mentioned
in Section 1, they independently proposed using duplicate-insensitive sketches
for robust aggregation in sensor networks and demonstrated the advantages of
the RINGS topology over previous tree-based approaches. A key result in their
article was an order- and duplicate-insensitive Sum algorithm. Because this
algorithm offers superior accuracy over the one we developed (Section 4), we
have used it in our experimental study in Section 6. Our work extends Con-
sidine et al. [2004] in a number of important ways: (1) we present the first
formal definition of duplicate-insensitive synopses; (2) we prove powerful the-
orems characterizing ODI synopses and their error guarantees—their article
has no analogous result; (3) we present solutions for a wider range of aggre-
gates; (4) we consider techniques for adaptive rings that reduce message loss;
and (5) our simulation results use a more realistic communication loss model,
and consider scenarios not addressed in their article such as correlated node
failures.

7.2 Query Processing over Data Streams

The use of synopses in synopsis diffusion is related to that in data stream
algorithms. There has been a flurry of recent work in the data stream commu-
nity devising clever synopses to answer aggregate queries on data streams (see
Babcock et al. [2002] and Muthukrishnan [2003] for surveys, and Cormode
et al. [2005] and Zhang et al. [2005] for some more recent work). There the
goals were to estimate an aggregate with one pass through the data and only
limited memory. Thus at any point in scanning the data stream, the limited
memory data stream synopsis is a small digest suitable for producing a highly
accurate estimate of the stream to that point. The traditional data streams
model is (i) centralized, that is, the synopsis is generated at a single place, and
(ii) order-, but not duplicate-, insensitive. Thus the model is not adequate for
the ODI synopses required for synopsis diffusion.

The same synopsis used in traditional data streams can sometimes be used
for synopsis diffusion. However, synopsis diffusion introduces two complications
beyond traditional data streams. First, the data is not presented as a sequen-
tial stream to a single party. Instead, the data is spread among multiple parties
and the aggregation must occur in-network. Specifically, the Synopsis Fusion
function merges two synopses, not just a current synopsis with a next stream
value. More related then is work on distributed streams algorithms [Gibbons
and Tirthapura 2001, 2002]. In the distributed streams model, there are multi-
ple parties, each observing a stream and having limited memory, and the goal is
to estimate aggregates over the union of these streams by exchanging synopses
at query time. This requires the merging of multiple synopses (à la Synopsis Fu-
sion). Second, synopsis diffusion requires duplicate-insensitive synopses. None
of the prior work on sequential or distributed data streams was concerned with
duplicate sensitivity. (The exception is for aggregates that are by definition
duplicate-insensitive, such as Count Distinct.) Only recently, Tao et al. [2004]
used duplicate-insensitive counting in mobile environments.
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Fig. 11. Hierarchy among synopsis problems. Each edge is directed from an easier problem to a
harder problem.

Figure 11 diagrams a path for developing new synopsis diffusion algorithms,
where each edge is directed from an easier problem to a harder problem.

8. CONCLUSIONS

In this article, we presented synopsis diffusion, a general framework for de-
signing energy-efficient, highly accurate, in-network aggregation schemes for
wireless sensor networks. Synopsis diffusion enables aggregation algorithms
and message routing to be optimized independently, through its use of order-
and duplicate-insensitive (ODI) synopses. Our article is the first to define and
study this important class of synopses; previous work only considered isolated
examples of such synopses. We proved the powerful and somewhat surprising
result that four easy-to-check properties on the synopsis generation and fusion
functions characterize ODI synopses. We showed how many aggregates can be
computed in-network using ODI synopses and how ODI synopses provide im-
plicit acknowledgments for network transmissions. Light-weight monitoring of
transmissions using such acknowledgments can be exploited to create an adap-
tive, energy-efficient aggregation topology such as ADAPTIVE RINGS. Finally, we
provided an extensive performance study on a realistic simulator demonstrat-
ing the significant robustness, accuracy, and energy-efficiency improvements
achieved by using an ODI-synopsis based approach running on ADAPTIVE RINGS.

Our ongoing efforts on synopsis diffusion include understanding the trade-
offs between synopsis diffusion and existing tree-based schemes (e.g., approxi-
mation errors, message sizes) and developing hybrid aggregation schemes that
combine the advantages of the two schemes. Our initial results include a hybrid
topology called Tributary-Delta [Manjhi et al. 2005], which runs both synop-
sis diffusion and tree-based schemes simultaneously in different regions of the
network, depending on current loss conditions. We are also developing ODI
synopses for additional aggregates. For example, in Manjhi et al. [2005], we
proposed ODI synopsis for computing the frequent items in a network. Finally,
our future plans include implementing and evaluating synopsis diffusion on
real sensor deployments.

ACM Transactions on Sensor Networks, Vol. 4, No. 2, Article 7, Publication date: March 2008.



Synopsis Diffusion for Robust Aggregation in Sensor Networks • 7:35

SG

r1

SG

2r

SG

2r

SG

r3

SG

r3

SG

r4

SG

2r

SG

r3

SG

r5

SFSF SF SF

SF

SF SF

SF

S

u

Fig. 12. Graph G1 used in the proof.

APPENDIX

A.1 Proof of Theorem 1

We now present the proof that Properties P1–P4 are necessary and sufficient
for ODI-correctness.

A.1.1 P1–P4 are Sufficient. Consider an arbitrary execution of synopsis
diffusion, producing a synopsis s. Let G be the aggregation DAG corresponding
to this execution, and let u be the node in G that outputs s. We will use the
DAG in Figure 3(a) as a running example. In this proof, we will perform a
series of transformations to G that, by properties P1–P4, will not change the
output of u, and yet will result in the canonical left-deep tree in the definition
of ODI-correctness (i.e., Figure 3(b) in our running example).

First, let G1 be the tree rooted at u corresponding to G, resulting from re-
placing each node in G with outdegree k > 1 with k nodes of outdegree 1,
replicating the entire subgraph under the original node for each of the k nodes.
See Figure 12. This may create many duplicate SF and SG nodes. Also, any
node in G without a path to u is discarded (it did not affect the computation of
s). G1 corresponds to a valid execution because SF is deterministic (so applying
it in independent nodes results in the same output, given the same inputs),
and likewise SG(ri) = SG(ri) is a special case of property P1. Note that there is
exactly one leaf in G1 for each tuple in the synopsis label SL(s).

Second, by properties P2 and P3, we can reorganize G1 into an equivalent
tree G2 where the leaves of G2 are sorted by �q({r}) values: leaf SG(ri) precedes
leaf SG(r j ) if and only if �q({ri}) ≤ �q({r j }).

Third, for each pair of adjacent leaves SG(ri), SG(r j ) such that �q({ri}) =
�q({r j }), we can reorganize G2 (by applying P2 and P3) such that they are the
two inputs to an SF node. By property P1, both inputs are the same synopsis
s′, so by property P4, this SF node outputs s′. Replace the three nodes (the SF
node and its two leaf children) with either the leaf node SG(ri) or the leaf node
SG(r j ). See Figure 13. Note that either choice of leaf node will produce the same
output s′. Repeat until all adjacent leaf nodes are such that �q({ri}) < �q({r j }).
Call this G3. Note that there is exactly one leaf in G3 for each value in �q(SL(s)).

ACM Transactions on Sensor Networks, Vol. 4, No. 2, Article 7, Publication date: March 2008.



7:36 • S. Nath et al.

SF

SF

SFSG

r1

SF

SF

SFSG

r1
SG

2r

SG

2r

SF

SG

SG SG

S

u

S

u

r2

r3 r3
S’ S’

S’S’

Fig. 13. Merging two duplicate leaves. Only the left half of the tree is shown. Property P3 is used
to transform G1 into the tree on the left. Properties P1 and P4 ensure that the same synopsis s′
is computed where shown. Thus, replacing the three nodes with one, as on the right, leaves the
synopses computed by the rest of the tree unchanged.

Finally, reorganize the tree G3 using P2 and P3 into a left-deep tree G4

(Figure 3(b)); this is precisely the canonical binary tree. In particular, there
is exactly one leaf node in G4 for each value in V = �q(SL(s)), and the left-
deep tree corresponds to the definition of SG∗(V ). Because performing the SG
and SF functions as indicated by G4 produces the original output s (i.e., the
transformations have not changed the output), the algorithm is ODI-correct.

A.1.2 P1–P4 are Necessary. First we observe that by the definition of ODI-
correctness, if two synopsis computations for a query q have the same synopsis
label, they result in the same synopsis s, namely, s = SG∗(�q(SL(s))). Now
consider arbitrary s1, s2 and s3 in S, and a corresponding aggregation DAG
for each. The synopsis label for SF(s1, s2) is the same as the synopsis label
for SF(s2, s1), because the � operator is commutative. Similarly, the synopsis
label for SF(s1, SF(s2, s3)) is the same as for SF(SF(s1, s2), s3), because the � op-
erator is associative. Thus properties P2 and P3 follow from the observation.
Furthermore, let SL1 and SL2 be synopsis labels for two synopsis computa-
tions for a query q. Our second observation is that by the definition of ODI-
correctness, if SL2 differs from SL1 only in that readings may occur more times
in SL2 than in SL1, the two computations result in the same synopsis. Now con-
sider an arbitrary s ∈ S and a corresponding aggregation DAG. The synopsis
label for SF(s, s) differs from the synopsis label for s only in that readings occur
twice as often. Thus, property P4 follows from our second observation.

Finally, consider an arbitrary ri and r j in R such that �q({ri}) = �q({r j }) =
{v1} for some value v1. Let s = SF(SG(ri), SG(r j )). By the definition of ODI-
correctness, s = SG∗(�q({ri, r j })) = SG∗({v1}), which equals both SG(ri) and
SG(r j ). Thus property P1 follows.

A.2 Efficient Generation of Random Bits

Several of the algorithms described in Sections 2.2 and 4 require generating
random bits, in particular, the experiment CT() requires tossing a fair coin.
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Shift left
14 13 5 4 3 2 1 0

.  .  .

Fig. 14. Generating random bits, based on the primitive polynomial (14, 5, 3, 1, 0), by using a shift
register and exclusive-or gates.

Fig. 15. A software implementation (in the C language) to generate random bits based on the
primitive polynomial (14, 5, 3, 1, 0).

We now describe an efficient technique for generating such bits on resource-
constrained sensors nodes.

The solution is based on “primitive polynomials modulo 2,” a special class
of polynomials with coefficients 0 or 1 [Watson 1962]. Such a polynomial of
degree n defines a recurrence relation for obtaining a new random bit from the
n preceding bits. The recurrence relation is guaranteed to produce a sequence
of maximal length, that is, cycle through all possible sequences of n bits (except
all zeros) before it repeats. Therefore one can seed the sequence with any initial
bit pattern (except all zeros), and get 2n − 1 random bits before the sequence
repeats. For example, consider the primitive polynomial x14 + x5 + x3 + x + 1
(compactly represented by the nonzero powers of x: (14, 5, 3, 1, 0)). Let the bits
be numbered from 1 (most recently generated) through n (generated n steps
ago), and denoted a1, a2, . . . , an. Then the new bit a0 can be computed by the
recurrence formula: a0 = a14⊕a5⊕a3⊕a1, where ⊕ is the exclusive-or operation.
The process can be repeated to generate (214 − 1) random bits before repeating
the same sequence. For more examples of such polynomials, see Watson [1962].

The above algorithm can be efficiently implemented in software and hard-
ware, even in resource-constrained sensor nodes. Figure 14 shows a hardware
implementation of the algorithm based on the primitive polynomial (14, 5, 3,
1, 0). It uses a shift register: the contents of selected bits are combined by
exclusive-or operations, and the result is shifted in from the right. Figure 15
shows a software implementation of the same function; note that all it uses are
bit-wise and, or, xor, and shift operations.
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