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where dHTZ
i, (VS

410)i, and (VS
660)i are the data at

the i-th station (i 5 1,. . .,8) and dHTZ(. . .) is a
function of the variables g410 and g660. The
cumulative errors si are computed for dHTZ

i

and account for uncertainties of tdiff
i , (VS

410,660)i,
R, and ]lnVS/]T. The solution (Fig. 5A) is
consistent with the mineralogic Clapeyron
slopes of the olivine transformations (14). The
width of the error ellipses accounts for our
measurement uncertainties as well as for possi-
ble lateral variations in R (640%) and dlnVS/dT
(630%). Unlike the slope of the straight line in
Fig. 4B, the solution of Eq. 1 is not sensitive to
the two extremal data points; excluding either
or both results in a small displacement of the
best-fit point and a slight widening of the 1s
ellipses (Fig. 5B).

The correlation between tdiff and VS
TZ

(and thus between the TZ thickness and tem-
perature) in East Asia–Australia (Fig. 4) con-
trasts the weak correlation inferred from
global tdiff data sets and tomographic models
(12, 13, 29). We suggest that this inconsis-
tency is due to differences in spatial resolu-
tion of tdiff measurements, on the one hand,
and of VP

TZ or VS
TZ values from global tomog-

raphy, on the other. The resolution of global
wavespeed heterogeneity in the TZ is most
uniform (30, 31) at wavelengths that are
much larger (.3000 km) than the spatial
resolution of the tdiff measurements ('500
km), and this may obscure existing tdiff – VS

TZ

correlations. Our study, in which tdiff and
VS

TZ relate to the same spatial length scale,
corroborates models in which the phase trans-
formations in olivine cause both 410 and 660.
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Identity and Search
in Social Networks

Duncan J. Watts,1,2,3* Peter Sheridan Dodds,2 M. E. J. Newman3

Social networks have the surprising property of being “searchable”: Ordinary
people are capable of directing messages through their network of acquain-
tances to reach a specific but distant target person in only a few steps. We
present a model that offers an explanation of social network searchability in
terms of recognizable personal identities: sets of characteristics measured along
a number of social dimensions. Our model defines a class of searchable net-
works and a method for searching them that may be applicable to many
network search problems, including the location of data files in peer-to-peer
networks, pages on the World Wide Web, and information in distributed da-
tabases.

In the late 1960s, Travers and Milgram (1)
conducted an experiment in which randomly
selected individuals in Boston, Massachu-
setts, and Omaha, Nebraska, were asked to
direct letters to a target person in Boston,

each forwarding his or her letter to a single
acquaintance whom they judged to be closer
than themselves to the target. Subsequent
recipients did the same. The average length of
the resulting acquaintance chains for the let-
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ters that eventually reached the target (rough-
ly 20%) was about six. This reveals not only
that short paths exist (2, 3) between individ-
uals in a large social network but that ordi-
nary people can find these short paths (4 ).
This is not a trivial statement, because people
rarely have more than local knowledge about
the network. People know who their friends
are. They may also know who some of their
friends’ friends are. But no one knows the
identities of the entire chain of individuals
between themselves and an arbitrary target.

The property of being able to find a target
quickly, which we call searchability, has been
shown to exist in certain specific classes of
networks that either possess a certain fraction
of hubs [highly connected nodes which, once
reached, can distribute messages to all parts
of the network (5–7 )] or are built upon an
underlying geometric lattice that acts as a
proxy for “social space” (4 ). Neither of these
network types, however, is a satisfactory
model of society.

Here, we present a model for a social
network that is based upon plausible social
structures and offers an explanation for the
phenomenon of searchability. Our model fol-
lows naturally from six contentions about
social networks.

1) Individuals in social networks are en-
dowed not only with network ties, but iden-
tities (8): sets of characteristics attributed to
them by themselves and others by virtue of
their association with, and participation in,
social groups (9, 10). The term “group” refers
to any collection of individuals with which
some well-defined set of social characteris-
tics is associated.

2) Individuals break down, or partition,
the world hierarchically into a series of lay-
ers, where the top layer accounts for the
entire world and each successively deeper
layer represents a cognitive division into a
greater number of increasingly specific
groups. In principle, this process of distinc-
tion by division can be pursued all the way
down to the level of individuals, at which
point each person is uniquely associated with
his or her own group. For purposes of iden-
tification, however, people do not typically
do this, instead terminating the process at the
level where the corresponding group size g
becomes cognitively manageable. Academic
departments, for example, are sometimes
small enough to function as a single group
but tend to split into specialized subgroups as
they grow larger. A reasonable upper bound

on group size (9) is g > 100, a number that
we incorporate into our model (Fig. 1A). We
define the similarity xij between individuals i
and j as the height of their lowest common
ancestor level in the resulting hierarchy, set-
ting xij 5 1 if i and j belong to the same
group. The hierarchy is fully characterized by
depth l and constant branching ratio b. The
hierarchy is a purely cognitive construct for
measuring social distance, and not an actual
network. The real network of social connec-
tions is constructed as follows.

3) Group membership, in addition to de-
fining individual identity, is a primary basis
for social interaction (10, 11) and therefore
acquaintanceship. As such, the probability of
acquaintance between individuals i and j de-
creases with decreasing similarity of the
groups to which they respectively belong. We
model this by choosing an individual i at
random and a link distance x with probability
p(x) 5 cexp[2ax], where a is a tunable
parameter and c is a normalizing constant.
We then choose a second node j uniformly
among all nodes that are a distance x from i,
repeating this process until we have con-
structed a network in which individuals have
an average number of friends z. The param-
eter a is therefore a measure of homophily—
the tendency of like to associate with like.
When e2a ,, 1, all links will be as short as
possible, and individuals will connect only to
those most similar to themselves (i.e., mem-
bers of their own bottom-level group), yield-
ing a completely homophilous world of iso-
lated cliques. By contrast, when e2a 5 b, any
individual is equally likely to interact with
any other, yielding a uniform random graph
(12) in which the notion of individual simi-
larity or dissimilarity has become irrelevant.

4) Individuals hierarchically partition the

social world in more than one way (for ex-
ample, by geography and by occupation). We
assume that these categories are independent,
in the sense that proximity in one does not
imply proximity in another. For example, two
people may live in the same town but not
share the same profession. In our model, we
represent each such social dimension by an
independently partitioned hierarchy. A
node’s identity is then defined as an H-di-
mensional coordinate vector vWi, where vi

h is
the position of node i in the hth hierarchy, or
dimension. Each node i is randomly assigned
a coordinate in each of H dimensions and is
then allocated neighbors (friends) as de-
scribed above, where now it randomly choos-
es a dimension h (e.g., occupation) to use for
each tie. When H 5 1 and e2a ,, 1, the
density of network ties must obey the con-
straint z , g.

5) On the basis of their perceived similar-
ity with other nodes, individuals construct a
measure of “social distance” yij, which we
define as the minimum ultrametric distance
over all dimensions between two nodes i and
j; i.e., yij 5 minh xij

h. This minimum metric
captures the intuitive notion that closeness in
only a single dimension is sufficient to con-
note affiliation (for example, geographically
and ethnically distant researchers who collab-
orate on the same project). A consequence of
this minimal metric, depicted in Fig. 1B, is
that social distance violates the triangle in-
equality—hence it is not a true metric dis-
tance—because individuals i and j can be
close in dimension h1, and individuals j and k
can be close in dimension h2, yet i and k can
be far apart in both dimensions.

6) Individuals forward a message to a
single neighbor given only local information
about the network. Here, we suppose that

1Department of Sociology, Columbia University, New
York, NY 10027, USA. 2Columbia Earth Institute, Co-
lumbia University, New York, NY 10027, USA. 3Santa
Fe Institute, 1399 Hyde Park Road, Santa Fe, NM
87501, USA.

*To whom correspondence should be addressed. E-
mail: djw24@columbia.edu

Fig. 1. (A) Individuals
(dots) belong to groups
(ellipses) that in turn
belong to groups of
groups, and so on, giv-
ing rise to a hierarchical
categorization scheme.
In this example, groups
are composed of g 5 6
individuals and the hi-
erarchy has l 5 4 lev-
els with a branching ra-
tio of b 5 2. Individuals
in the same group are
considered to be a dis-
tance x 5 1 apart, and
the maximum separa-
tion of two individuals
is x 5 l . The individuals i and j belong to a category two levels above that of their respective groups,
and the distance between them is xij 5 3. Individuals each have z friends in the model and are more
likely to be connected with each other the closer their groups are. (B) The complete model has many
hierarchies indexed by h 5 1. . .H, and the combined social distance yij between nodes i and j is taken
to be the minimum ultrametric distance over all hierarchies yij 5 minh xij

h. The simple example shown
here for H 5 2 demonstrates that social distance can violate the triangle inequality: yij 5 1 because i
and j belong to the same group under the first hierarchy and similarly yjk 5 1 but i and k remain distant
in both hierarchies, giving yik 5 4 . yij1yjk 5 2.
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each node i knows only its own coordinate
vector vWi, the coordinate vectors vWj of its
immediate network neighbors, and the coor-
dinate vector of a given target individual vWt,
but is otherwise ignorant of the identities or
network ties of nodes beyond its immediate
circle of acquaintances.

Individuals therefore have two kinds of
partial information: social distance, which
can be measured globally but which is not a
true distance (and hence can yield misleading
estimates); and network paths, which gener-
ate true distances but which are known only
locally. Although neither kind of information
alone is sufficient to perform efficient search-

es, here we show that a simple algorithm that
combines knowledge of network ties and so-
cial identity can succeed in directing messag-
es efficiently. The algorithm we implement is
the same greedy algorithm Milgram suggest-
ed: Each member i of a message chain for-
wards the message to its neighbor j who is
closest to the target t in terms of social dis-
tance; that is, yjt is minimized over all j in i’s
network neighborhood.

Our principal objective is to determine the
conditions under which the average length
^L& of a message chain connecting a random-
ly selected sender s to a random target t is
small. Although “small” has recently been

taken to mean that ^L& grows slowly with the
population size N (13, 14 ), Travers and Mil-
gram found only that chain lengths were
short. Furthermore, these message chains had
to be short in an absolute sense because at
each step, they were observed to terminate
with probability p > 0.25 (1, 15). We there-
fore adopt a more realistic, functional notion
of efficient search, defining for a given mes-
sage failure probability p, a searchable net-
work as any network for which q, the prob-
ability of an arbitrary message chain reaching
its target, is at least a fixed value r. In terms
of chain length, we formally require q 5
^(1 2 p)L& $ r, and from this we can obtain
an estimate of the maximum required ^L&
using the approximated inequality ^L& # lnr/
ln(1 2 p). For the purposes of this study, we
set r 5 0.05 and p 5 0.25, yielding the
stringent requirement that ^L& # 10.4 inde-
pendent of the population size N. Figure 2A
presents a typical phase diagram in H and a,
outlining the searchable network region for
several choices of N, g 5 100, and z 5 g 2
1 5 99.

Our main result is that searchable net-
works occupy a broad region of parameter
space (a,H) which, as we argue below, cor-
responds to choices of the model parameters
that are the most sociologically plausible.
Hence our model suggests that searchability
is a generic property of real-world social
networks. We support this claim with some
further observations and demonstrate that our
model can account for Milgram’s experimen-
tal findings.

First, we observe that almost all search-
able networks display a . 0 and H . 1,
consistent with the notion that individuals are
essentially homophilous (that is, they associ-
ate preferentially with like individuals) but
judge similarity along more than one social
dimension. Neither the precise degree to
which they are homophilous, nor the exact
number of dimensions they choose to use,
appears to be important—almost any reason-
able choice will do. The best performance,
over the largest interval of a, is achieved for
H 5 2 or 3—an interesting result in light of
empirical evidence (16 ) that individuals
across different cultures in small-world ex-
periments typically use two or three dimen-
sions when forwarding a message.

Second, as Fig. 2B shows, although in-
creasing the number of independent dimen-
sions from H 5 1 yields a dramatic reduction
in delivery time for values of a . 0, this
improvement is gradually lost as H is in-
creased further. Hence the window of search-
able networks in Fig. 2A exhibits an upper
boundary in H. Because ties associated with
any one dimension are allocated independent-
ly with respect to ties in any other dimension,
and because for fixed average degree z, larger
H necessarily implies fewer ties per dimen-

Fig. 3. Comparison between n(L), the number
of completed chains of length L, taken from the
original small-world experiment (1) (bar graph)
and from an example of our model with N 5
108 individuals (filled circles with the line being
a guide for the eye). The experimental data
shown are for the 42 completed chains that
originated in Nebraska. ( We have excluded the
24 completed chains that originated in Boston
as this would correspond to N > 106.) The
model parameters are H 5 2, a 5 1, b 5 10,
g 5 100, and z 5 300; message attrition rate is set at 25%; n(L) for the model is compiled from
106 random chains and is normalized to match the 42 completed chains that started in Nebraska.
The average chain length of Milgram’s experiment is ;6.5, whereas the model yields ^L& > 6.7. The
distributions compare well: A two-sided Kolmogorov-Smirnov test yields a P-value of P > 0.57,
whereas for a x2 test, x2 > 5.46 and P > 0.49 (seven bins). (A large value of P supports the
hypothesis that the distributions are similar.) Even without attrition, the model’s average search
time is ^L& > 8.5 and the median chain length is 8. The model does not entirely match the
experimental data because the former requires approximately 360 initial chains to achieve 42
completions as compared with 196.

Fig. 2. (A) Regions in H-a space
where searchable networks exist
for varying numbers of individual
nodes N (probability of message
failure p 5 0.25, branching ratio
b 5 2, group size g 5 100, av-
erage degree z 5 g 2 1 5 99,
105 chains sampled per net-
work). The searchability criterion
is that the probability of mes-
sage completion q must be at
least r 5 0.05. The lines corre-
spond to boundaries of the
searchable network region for
N 5 102,400 (solid), N 5
204,800 (dot-dash), and N 5
409,600 (dash). The region of
searchable networks shrinks with
N, vanishing at a finite value of
N that depends on the model
parameters. Note that z , g is
required to explore H-a space
because for H 5 1 and a suffi-
ciently large, an individual’s
neighbors must all be contained
within their sole local group. (B)
Probability of message comple-
tion q(H) when a 5 0 (squares)
and a 5 2 (circles) for the N 5 102,400 data set used in (A). The horizontal line shows the position
of the threshold r 5 0.05. Open symbols indicate that the network is searchable (q $ r) and closed
symbols mean otherwise. For a 5 0, searchability degrades with each additional hierarchy. For the
homophilous case of a 5 2 with a single hierarchy, less than 1% of all searches find their target
(q > 0.004). Adding just one other hierarchy increases the success rate to q > 0.144, and q slowly
decreases with H thereafter.

R E P O R T S

17 MAY 2002 VOL 296 SCIENCE www.sciencemag.org1304

 o
n 

Ja
nu

ar
y 

11
, 2

01
0 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org


sion, the network ties become less correlated
as H increases. In the limit of large H, the
network becomes essentially a random graph
(regardless of a) and the search algorithm
becomes a random walk. An effective decen-
tralized search therefore requires a balance
(albeit a highly forgiving one) of categorical
flexibility and constraint.

Finally, by introducing parameter choices
that are consistent with Milgram’s experiment
(N 5 108, p 5 0.25) (1), as well as with
subsequent empirical findings (z 5 300, H 5 2)
(17, 16), we can compare the distribution of
chain lengths in our model with that of Travers
and Milgram (1) for plausible values of a and b.
As Fig. 3 shows, we obtain ^L& > 6.7 for a 5
1 and b 5 10, indicating that our model cap-
tures the essence of the real small-world prob-
lem. This agreement is robust with respect to
variations in the branching ratio, showing little
change over the range 5 , b , 50.

Although sociological in origin, our model
is relevant to a broad class of decentralized
search problems, such as peer-to-peer network-
ing, in which centralized servers are excluded
either by design or by necessity, and where
broadcast-type searches (i.e., forwarding mes-
sages to all neighbors rather than just one) are
ruled out because of congestion constraints (6).
In essence, our model applies to any data struc-
ture in which data elements exhibit quantifiable
characteristics analogous to our notion of iden-
tity, and similarity between two elements—
whether people, music files, Web pages, or
research reports—can be judged along more
than one dimension. One of the principal diffi-
culties with designing robust databases (18) is
the absence of a unique classification scheme
that all users of the database can apply consis-
tently to place and locate files. Two musical
songs, for example, can be similar because they
belong to the same genre or because they were
created in the same year. Our model transforms
this difficulty into an asset, allowing all such
classification schemes to exist simultaneously,
and connecting data elements preferentially to
similar elements in multiple dimensions. Effi-
cient decentralized searches can then be con-
ducted by means of simple, greedy algorithms
providing only that the characteristics of the
target element and the current element’s imme-
diate neighbors are known.
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Ascent of Dinosaurs Linked to
an Iridium Anomaly at the
Triassic-Jurassic Boundary

P. E. Olsen,1 D. V. Kent,1,2 H.-D. Sues,3 C. Koeberl,4 H. Huber,4

A. Montanari,5 E. C. Rainforth,1 S. J. Fowell,6 M. J. Szajna,7

B. W. Hartline7

Analysis of tetrapod footprints and skeletal material from more than 70 lo-
calities in eastern North America shows that large theropod dinosaurs appeared
less than 10,000 years after the Triassic-Jurassic boundary and less than 30,000
years after the last Triassic taxa, synchronous with a terrestrial mass extinction.
This extraordinary turnover is associated with an iridium anomaly (up to 285
parts per trillion, with an average maximum of 141 parts per trillion) and a fern
spore spike, suggesting that a bolide impact was the cause. Eastern North
American dinosaurian diversity reached a stable maximum less than 100,000
years after the boundary, marking the establishment of dinosaur-dominated
communities that prevailed for the next 135 million years.

One of the most striking events in the Mesozoic
was the rise to dominance of dinosaurs in ter-
restrial ecosystems. The cause and timing of
their early Mesozoic ascent have been debated
(1–4), with difficulties in global correlation and
low sampling density limiting the utility of glob-
al compilations and obscuring relations to pos-
sible forcing mechanisms. However, terrestrial
vertebrate assemblages in eastern North Amer-
ica are temporally better constrained than else-
where and provide high-resolution biological
and geochemical data bearing on this issue. This
region was within the tropics during the Triassic
and contained rift valleys, which were formed
during the incipient fragmentation of Pangea.
These basins contain kilometer-thick sections of
continental strata, termed the Newark Super-
group, which have recorded the rise of dinosaurs
across 15° of paleolatitude (5). Milankovitch-
type climate cycles permeate the lacustrine stra-
ta of these basins, and in conjunction with
paleomagnetic reversal stratigraphy, all of the

fossils can be placed within a high-resolution
astronomically tuned time scale (6, 7) (Fig. 1).

Here, we focus on material from 80 localities
in four Newark Supergroup basins, consisting of
reptile footprints (8, 9), skeletal remains (2, 10),
and palynological material (11) keyed into the
astronomically tuned time scale (Figs. 1 and 2).
The footprints are abundant, well-preserved, and
diverse, and they offer a temporal sampling of
terrestrial vertebrate communities that is better
than the sampling from skeletal material around
the Triassic-Jurassic boundary (4, 8). On the
basis of comparisons between the reconstructed
osteology of footprints and known skeletal
remains, the ichnogenus level generally corre-
sponds to an osteological family or higher taxo-
nomic level (Table 1). However, footprints sam-
ple the terrestrial communities directly, and
major changes in footprint assemblage compo-
sition probably represent important ecological
changes (12). Even with uncertainty in the nature
of the trackmakers, well-preserved footprints of-
fer a useful independent proxy of faunal change
(13), and the observed stratigraphic changes in
the ichnological assemblages are consistent with
the changes seen in osteological remains (Fig. 1).

On the basis of compiled ranges tied to the
time scale (Fig. 1), Newark Supergroup dino-
saurian ichnotaxa show a slow increase in rela-
tive abundance and a stepped increase in maxi-
mum size below the Triassic-Jurassic boundary
(9). The ornithischian dinosaurian ichnogenus
Atreipus (14) is the most common dinosaurian
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