
A DoS-Resilient Information System for
Dynamic Data Management

by Baumgart, M. and Scheideler, C. and Schmid, S. In SPAA 2009

Mahdi Asadpour
(amahdi@student.ethz.ch)

2

Outline

 Denial of Service Attacks
 Chameleon: System Description
 Chameleon: Operational Details
 Conclusion

Denial of Service Attacks

4

DoS attack

 (Distributed) Denial of Service (DoS) attacks are one of the
biggest problems in today’s open distributed systems.

 Botnet: A set of compromised networked computers controlled
through the attacker‘s program (the “bot“).
 Image credit: Network Security course, Thomas Dübendorfer, ETH Zürich.

5

Examples

 DoS attack against the root servers of the DNS system: roots,
top-level domains, ...

 TCP SYN flood attack
 Prevention: SYN cookies
 Image credit: http://en.wikipedia.org/wiki/SYN_flood

Root Domain Name Servers

http://en.wikipedia.org/wiki/SYN_flood�

6

DoS prevention

 Redundancy: information is replicated on multiple machines.
 Storing and maintaining multiple copies have large overhead in

storage and update costs.
 Full replication is not feasible in large information systems.

 In order to preserve scalability, the burden on the servers
should be minimized.
 Limited to logarithmic factor.
 Challenge: how to be robust against DoS attacks?

7

Therefore, a dilemma

 Scalability: minimize replication of information
 Robustness: maximize resources needed by attacker

8

Related work

 Many scalable information systems:
 Chord, CAN, Pastry, Tapestry, ...
 Not robust against flash crowds

 Caching strategies against flash crowds:
 CoopNet, Backlash, PROOFS,…
 Not robust against adaptive lookup attacks

9

Related work, cont.

 Systems robust against DoS-attacks:
 SOS, WebSOS, Mayday, III,…
 Basic strategy: hiding original location of data
 Not work against past insiders

 Awerbuch and Scheideler (DISC 07):
 DoS-resistent information system that can only handle get

requests under DoS attack

Chameleon: System Description

11

Model

 Chameleon: a distributed information system, which is
provably robust against large-scale DoS attacks.

 N fixed nodes in the system, and all are honest and reliable.
 The system supports these operations:

 Put(d): inserts/updates data item d into the system
 Get(name): this returns the data item d with

Name(d)=name, if any.
 Assume that time proceeds in steps that are synchronized

among the nodes.

12

Past insider attack

 Attacker knows everything up to some phase t0 that may not
be known to the system.
 A fired employee, for example (Image Credit: Bio Job Blog).

 Can block any ε-fraction of servers
 Can generate any set of put/get requests, one per server.

13

Goals

 Scalability: every server spends at most polylog time and
work on put and get requests.

 Robustness: every get request to a data item inserted or
updated after t0 is served correctly.

 Correctness: every get request to a data item is served
correctly if the system is not under DoS-attack.

 The paper does not seek to prevent DoS attacks, but
rather focuses on how to maintain a good availability
and performance during the attack.

14

Also, distributing the load evenly among all nodes

Image credit: Internet!

15

Basic strategy

 Choose suitable hash functions h1,..,hc:D→V
(D: name space of data, V: set of servers)

 Store copy of item d for every i and j randomly in a set of
servers of size 2j that contains hi(d)

hi(d)

easy to
block

difficult to
block

easy to
find

difficult to
find

16

Put and Get Requests

 Most get requests can access close-by copies, only a few
get requests have to find distant copies.

 Work for each server altogether just polylog(n) for any set of
n get requests, one per server.

 All areas must have up-to-date copies, so put requests may
fail under DoS attack. hi(d)

17

Distributed Hash Table (DHT)

 Chameleon employs the idea of DHT.
 Decentralized distributed systems that provide a lookup service

of (key, value) pairs: any participating node can efficiently
retrieve the value associated with a given key.
 Image credit: http://en.wikipedia.org/wiki/Distributed_hash_table

http://en.wikipedia.org/wiki/Distributed_hash_table�

18

Data stores

 Data management of Chameleon relies on two stores:
 p-store: a static DHT, in which the positions of the data items are

fixed unless they are updated.
 t-store: a classic dynamic DHT that constantly refreshes its

topology and positions of items (not known to a past insider).

19

P-store

 Nodes are completely interconnected and mapped to [0,1).
 A node i is responsible for the interval [i/n, (i+1)/n). It is

represented by log n bits, i.e. ∑ xi/2i

 The data items are also mapped to [0, 1), based on fixed hash
functions h1,..,hc : U → [0, 1) (known by everybody).

 For each data item d, the lowest level i = 0 gives fixed storage
locations h1(d), ..., hc(d) for d of which O(log n) are picked at
random to store up-to-date copies of d.

 Replicas are along prefix paths in the p-store.

20

P-store, prefix path

21

T-store

 In order to correctly store the copies of a data item d, Ω(log n)
roots should be reached, which may not always be possible
due to a past-insider attack. T-store is used to temporarily
store data.

 Its topology is a de Bruijn-like network with logarithmic node
degree, is constructed from scratch in every phase.

 de Bruijn graphs are useful as they have a logarithmic
diameter and a high expansion.

t-store

22

T-store, de Bruijn graph

 [0, 1)-space is partitioned into intervals of size ßlog n/n.
 In every phase, every non-blocked node chooses a random

position x in the interval.
 Then tries to establish connections to all other nodes that

selected the positions x, x-, x+, x/2, (x+1)/2
 Image credit: http://en.wikipedia.org/wiki/De_Bruijn_graph

http://en.wikipedia.org/wiki/De_Bruijn_graph�

23

New T-store

 Once the t-store has been established, the nodes at position 0
select a random hash function h : U → [0, 1) (by leader
election) and broadcast that to all nodes in the t-store.
 Not known to a past insider after t0.

 h determines the locations of the data items in the new t-store.
 d in the old t-store is stored in the cluster responsible for h(d).

t-store

t-store

h(d)

Chameleon: Operational Details

Image credit: Internet!

25

Overall procedure in a phase

1. Adversary blocks servers and initiates put & get requests
2. build new t-store, transfer data from old to new t-store
3. process all put requests in t-store
4. process all get requests in t-store and p-store
5. try to transfer data items from t-store to p-store

p-store

t-store

Internet

26

Stages

 Stage 1: Building a New t-Store
 Stage 2: Put Requests in t-Store
 Stage 3: Processing Get Requests
 Stage 4: Transferring Items

27

Stage 1: Building a New t-Store

 Join protocol: To form a de Bruijn network.
 Every non-blocked node chooses new random location in de

Bruijn network.
 Searches for neighbors in p-store using join(x) operation.
 Nodes in graph agree on a set of log n random hash functions

g1, . . . , gc‘ : [0, 1) → [0, 1) via randomized leader election.
 Randomized leader election: each node guesses a random

bit string and the one with lowest bit string wins and proposes
the hash functions, in O(log n) round/time.

28

Stage 1: Building a New t-Store, cont.

 Insert protocol: to transfer data items from the old t-store to
the new t-store.

 For every cluster in the old t-store with currently non-blocked
nodes, one of its nodes issues an insert(d) request for each
of the data items d stored in it.

 Each of these requests is sent to the nodes owning g1(x), . . . ,
gc‘(x) in the p-store, where x = ⌊h(d)⌋(δ log n)/n.

 Each non-blocked node collects all data items d to point x and
forwards them to those contacted it in the join protocol.

 O(n) items w.h.p.

29

Stage 2: Put Requests in t-Store

 New put requests are served in the t-store: for a put(d)
requests, a t-put(d) request is executed.

 Each t-put(d) request aims at storing d in the cluster
responsible for h(d) passing.

 The t-put requests are sent to their destination clusters using
de Bruijn paths, e.g. X → Y
 (x1, …, xlogn) → (ylogn, x1, …, xlogn -1) → … → (y1, …, ylogn)

 Filtering mechanism:
 Only one of the same t-put requests survives.

 Routing rule:
 Just ρ log2 n to pass a node

 O(logn) time, O(log2 n) congestion. d

d
dd

30

Stage 3: Processing Get Requests

 First: in the t-store using the t-get protocol
 de Bruijn routing with combining to lookup data in t-store
 O(log n) time and O(log2 n) congestion

 Second: If cannot be served in the t-store, then store in
the p-store using the p-get protocol.
 Three stages: preprocessing, contraction and expansion

 Filtering: almost similar to t-put.

d

d
dd

name

name
namename

31

Stage 3: Processing p-Get Requests, Preprocessing

 P-get Preprocessing: Determines blocked areas via sampling.
 Every non-blocked node v checks the state of α log n random

nodes in Ti(v) for every 0 ≤ i ≤ log n.
 If >= 1/4 of the nodes are blocked, v declares Ti(v) as blocked.

 O(1) time: Since the checking can be done in parallel.
 O(log2 n) congestion

32

Stage 3: Processing p-Get Requests, Contraction

 Each p-get(d) request issued by some node v selects a
random node out of all nodes and aims at reaching the node
responsible for hi(d), i in {1, …, c} in at most ξ log n hops.

 Stop: Tl(hi(id)) is blocked or hops > ξ log n => deactivate i
 O(log n) time, w.h.p

0 1

hi(x)

0

1

2

log n

33

Stage 3: Processing p-Get Requests, Expansion

 Looks for copies at successively wider areas.
 Every not-finished p-get(d) request sends (d, r, i,−) to a non-

blocked node v that was successfully contacted before.
 V maintains a copy b of d in (d, r, i, b) and executes O(log n) :

 Sends (d, r, i, b) to a random node in the same level.
 Replace b with most current copy of d, if any.

 O(log2 n)

34

Stage 4: Transferring Items

 Transfers all items stored in the t-store to the p-store using
the p-put protocol.

 After, the corresponding data item in the t-store is removed.
 p-put protocol has three stages: Preprocessing,

Contraction, Permanent storage

p-store

t-store
p-put(d1)p-put(d2)

35

Stage 4: Transferring Items, p-Put preprocessing

 p-Put preprocessing is like in the p-get protocol
 Determines blocked areas and average load in p-store via

sampling.
 O(1) time
 O(log2 n) congestion

36

Stage 4: Transferring Items, p-put Contraction

 p-put Contraction is identical to the contraction stage of the
p-get protocol.

 Tries to get to sufficiently many hash-based positions in p-
store.

 O(log n) time.

0 1

hi(x)

0

1

2

log n

37

Stage 4: Transferring Items, p-put Permanent storage

1. p-put Permanent storage: For each successful data item,
store new copies and delete as many old ones as possible.

2. In the node responsible for hi(d) (d’s root node) information
about the nodes storing a copy of d is stored.

3. This information is used to remove all out-of-date copies of d.

38

Stage 4: Transferring Items, p-put Permanent storage

4. If it is not possible (blocking), references to these out-of-date
copies are left in the roots (be deleted later on).

5. Select a random non-blocked node in each Tℓ(hi(d)) with ℓ in
{0, . . . , log n}.

6. Store an up-to-date copy of d in these nodes, and store
references to these nodes in hi(d).

7. O(log n) time. The number of copies of d remains O(log2 n).

Conclusion

40

Main theorem

 Theorem: Under any ε-bounded past-insider attack (for some
constant ε>0), the Chameleon system can serve any set of
requests (one per server) in O(log2 n) time s.t. every get
request to a data item inserted or updated after t0 is served
correctly, w.h.p.

 No degradation over time:
 O(log2 n) copies per data item
 Fair distribution of data among servers

41

Summary

 This paper shows how to build a scalable dynamic information
system that is robust against a past insider.

 Two distributed hash tables for data managements: temporary
and permanent, respectively t-store and p-store.

 The authors defined many constants ξ, ß, ρ, … but did not
optimize them, e.g. the replication factors.

 As also authors proposed, it would be interesting to study
whether the runtime of a phase can be reduced to O(log n).

 No experimental evaluation.

42

References

 Some of the slides are taken from the authors, with
permission.

 Main references:
1. B. Awerbuch and C. Scheideler. A Denial-of-Service Resistant

DHT. DISC 2007.
2. B. Awerbuch and C. Scheideler. Towards a Scalable and

Robust DHT. SPAA 2006.
3. D. Karger, et al. Consistent Hashing and Random Trees:

Distributed Caching Protocols for Relieving Hot Spots on
the World Wide Web. STOC 1997.

Thanks for your attention.

Any question?

	A DoS-Resilient Information System for Dynamic Data Management�by Baumgart, M. and Scheideler, C. and Schmid, S. In SPAA 2009
	Outline
	Denial of Service Attacks
	DoS attack
	Examples
	DoS prevention
	Therefore, a dilemma
	Related work
	Related work, cont.
	Chameleon: System Description
	Model
	Past insider attack
	Goals
	Also, distributing the load evenly among all nodes
	Basic strategy
	Put and Get Requests
	Distributed Hash Table (DHT)
	Data stores
	P-store
	P-store, prefix path
	T-store
	T-store, de Bruijn graph
	New T-store
	Chameleon: Operational Details
	Overall procedure in a phase
	Stages
	Stage 1: Building a New t-Store
	Stage 1: Building a New t-Store, cont.
	Stage 2: Put Requests in t-Store
	Stage 3: Processing Get Requests
	Stage 3: Processing p-Get Requests, Preprocessing
	Stage 3: Processing p-Get Requests, Contraction
	Stage 3: Processing p-Get Requests, Expansion
	Stage 4: Transferring Items
	Stage 4: Transferring Items, p-Put preprocessing
	Stage 4: Transferring Items, p-put Contraction
	Stage 4: Transferring Items, p-put Permanent storage
	Stage 4: Transferring Items, p-put Permanent storage
	Conclusion
	Main theorem
	Summary
	References
	�Thanks for your attention.

