
A Distributed Polylogarithmic Time Algorithm for
Self-Stabilizing Skip Graphs

Christian Decker

Distributed Computing Seminar

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 1 / 35

Outline

1 Skip Graphs

2 ALG+
Idea
Rules

3 How it works
Bottom-Up
Top-Down
Node join / departure

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 2 / 35

Overview

1 Skip Graphs

2 ALG+
Idea
Rules

3 How it works
Bottom-Up
Top-Down
Node join / departure

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 3 / 35

What is a DHT and what is it used for?

Datastructure for storage of data.
Scalable
Decentralized
High fault tolerance

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 4 / 35

How to create a simple DHT

0

5

7

9

3

1

4

3

6

9 2

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 5 / 35

Weaknesses of our Ring design

Long search/put/get operations
Single failures result in unrecoverable state

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 6 / 35

Multiple Rings?

0

5

7

9

3

1

4

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 7 / 35

The idea behind Skip Graphs

We generalize the idea of having multiple lists:
Each node participates in multiple rings/lists

Each node has a random String rs, of sufficient length
Each ring/list is identified by a prefix of length i
A node participates in a list if its rs matches the prefix of the list
(prei(u))
Each node has a successor (succi(u)) and predecessor (predi(u))
in each list it is participating in

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 8 / 35

The idea behind Skip Graphs

We generalize the idea of having multiple lists:
Each node participates in multiple rings/lists
Each node has a random String rs, of sufficient length

Each ring/list is identified by a prefix of length i
A node participates in a list if its rs matches the prefix of the list
(prei(u))
Each node has a successor (succi(u)) and predecessor (predi(u))
in each list it is participating in

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 8 / 35

The idea behind Skip Graphs

We generalize the idea of having multiple lists:
Each node participates in multiple rings/lists
Each node has a random String rs, of sufficient length
Each ring/list is identified by a prefix of length i

A node participates in a list if its rs matches the prefix of the list
(prei(u))
Each node has a successor (succi(u)) and predecessor (predi(u))
in each list it is participating in

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 8 / 35

The idea behind Skip Graphs

We generalize the idea of having multiple lists:
Each node participates in multiple rings/lists
Each node has a random String rs, of sufficient length
Each ring/list is identified by a prefix of length i
A node participates in a list if its rs matches the prefix of the list
(prei(u))

Each node has a successor (succi(u)) and predecessor (predi(u))
in each list it is participating in

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 8 / 35

The idea behind Skip Graphs

We generalize the idea of having multiple lists:
Each node participates in multiple rings/lists
Each node has a random String rs, of sufficient length
Each ring/list is identified by a prefix of length i
A node participates in a list if its rs matches the prefix of the list
(prei(u))
Each node has a successor (succi(u)) and predecessor (predi(u))
in each list it is participating in

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 8 / 35

The complete picture

rs=...

rs=0

rs=1

rs=00

rs=01

rs=10

rs=11

i=0

i=1

i=2

1

1

1

27

27

27

24

24

24

22

17

22

2217

17

14

14

10

10

10

9

9

9

7

7

7

6

6

6

5

5

5

3

3

3

2

2

2

14

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 9 / 35

Summary: Skip Graphs

Logarithmic diameter
Hypercubic-style Routing in O(log(n))

Not locally verifiable

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 10 / 35

Overview

1 Skip Graphs

2 ALG+
Idea
Rules

3 How it works
Bottom-Up
Top-Down
Node join / departure

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 11 / 35

Goals

Start from any weakly connected graph
O(log2(n)) rounds to stabilize
Fast node join and departure once stabilized

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 12 / 35

Idea

Divide the algorithm in two phases:
1 Bottom-up phase: create connected ρ-components for all prefixes
ρ

2 Top-Down phase: sort each list by merging the the already sorted
ρ1- and ρ0-components into a ρ-component

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 13 / 35

Idea

It’s nothing more than distributed merge sort.

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 14 / 35

Tools
We have to slightly extend the original Skip Graph:

Extended Predecessor/Successor
Instead of considering just predecessor and successor from our prefix
we already look ahead at the next bit:

pred∗i (v , x) = pred(v , {w |prei+1(w) = prei(v) ◦ x})

succ∗i (v , x) = succ(v , {w |prei+1(w) = prei(v) ◦ x})

Range
Take the farthest away of successor and predecessor. All nodes in
between will be in the range and will be the neighbors of the current
node:

v .range∗[i] = [min{pred∗i (v , x)},max{succ∗i (v , x)}]

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 15 / 35

The final Picture

rs=...

rs=0

rs=1

rs=00

rs=01

rs=10

rs=11

i=0

i=0

i=1

1

1

1

27

27

27

24

24

24

22

17

22

2217

17

14

14

10

10

10

9

9

9

7

7

7

6

6

6

5

5

5

3

3

3

2

2

2

14

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 16 / 35

The final Picture

rs=...

rs=0

rs=1

rs=00

rs=01

rs=10

rs=11

i=0

i=0

i=1

1

1

1

27

27

27

24

24

24

22

17

22

2217

17

14

14

10

10

10

9

9

9

7

7

7

6

6

6

5

5

5

3

3

3

2

2

2

14

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 17 / 35

Tools

Stable / Temporary edges
Edges are either temporary or stable. Edges are considered stable if
(from the local view of the node) it will appear in the finished Skip+
Graph. Stable edges are represented by a local flag u.F (v) = 1

ρ-component
A subgraph of all nodes sharing the prefix ρ.

ρ-Buddy
Each node has a Buddy at each level | ρ |= i which differs at the last
bit. These are used to pass temporary to better fitting candidates.

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 18 / 35

Basic operations

insert(u, v) is the basic operation of the algorithm.
Any node w issues an insert(u, v) operation to a node u telling it to
add v to its neighborhood.

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 19 / 35

Rounds

Preprocessing
I Process all insert(u, v) requests by adding them as temporary

(u.F (v) = 0)
I Check liveness of neighbors and remove failed ones
I For every i determine predi (u,0), predi (u,1), succi (u,0) and

succi (u,1)
I Send state updates to neighbors

Execute Rules according to local state

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 20 / 35

Rules

Rule 1a: Create reverse edges
For every stable edge (u, v), u sets u.F (v) = 1 and initiates an
insert(v ,u)

Rule 1b and 1c: Introduce Stable Edges
u initiates insert(v ,w) and insert(w , v) for every neighbors w in the
range of v (prei(v) = prei(w) and w .id ∈ v .range[i])

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 21 / 35

Rules

Rule 1a: Create reverse edges
For every stable edge (u, v), u sets u.F (v) = 1 and initiates an
insert(v ,u)

Rule 1b and 1c: Introduce Stable Edges
u initiates insert(v ,w) and insert(w , v) for every neighbors w in the
range of v (prei(v) = prei(w) and w .id ∈ v .range[i])

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 21 / 35

Rules

Rule 2: Forward Temporary Edges
Every temporary edge (u, v) is forwarded to a stable neightbor of u
that has the largest common prefix with v .rs

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 22 / 35

Rules

Rule 3a: Introduce All
Every node u that has changed its stable edge set (destabilizing or
stabilizing edges) they introduce all neighbors with each other.

insert(u, v) u, v ∈ N(w)

Rule 3b: Linearize
u identifies stable neighbors (v1, . . . , vk), with common prefix of length
i , orders them by vk .id and executes insert(v1, v2), insert(v2, v3), . . . ,
insert(vk−1, vk)

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 23 / 35

Rules

Rule 3a: Introduce All
Every node u that has changed its stable edge set (destabilizing or
stabilizing edges) they introduce all neighbors with each other.

insert(u, v) u, v ∈ N(w)

Rule 3b: Linearize
u identifies stable neighbors (v1, . . . , vk), with common prefix of length
i , orders them by vk .id and executes insert(v1, v2), insert(v2, v3), . . . ,
insert(vk−1, vk)

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 23 / 35

Overview

1 Skip Graphs

2 ALG+
Idea
Rules

3 How it works
Bottom-Up
Top-Down
Node join / departure

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 24 / 35

How it works: Bottom-up

Remember that we want to create connected components for each
non-trivial prefix ρ

ρ-connected graphs stay connected
If a and b are ρ-connected at time t0, then they’ll be ρ-connected at any
t > t0

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 25 / 35

How it works: Bottom-up

σ-V-Links
If we have two nodes u and v with prefix ρx = σ and a node w with
prefix ρx̄ and u, v ∈ N(w), then u and v are said to be σ-V-Linked. If
two nodes are σ-V-Linked they’ll be σ-connected in the next round.

24

2210

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 26 / 35

How it works: Bottom-up

σ-k-Bridges
Two nodes a and b with prefix σ = ρx are in different components. c
(d) is a stable neighbor of a (b) with prefix ρx̄ . c and d are connected
at level | ρ | +k .

27

24

24

17

14

14

k

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 27 / 35

How it works: Bottom-up

(σ, k)-pre-components
Two nodes in different ρx = σ components are in a
(σ, k)-pre-component if Gρ, each has a buddy in ρx̄ and they are
connected (directly, via a σ-V-Link or via a (σ, k ′)-bridge with k ′ ≤ k).
After 4 rounds a and b are σ-connected.

27

22

17

97

65

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 28 / 35

How it works: Bottom-up

Bubbling up temporary edges
A temporary edge (u, v) at level l either stabilizes, or forwarded to l + 1.

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 29 / 35

How it works: Bottom-up

Connecting higher levels
If Gρ is connected at time t then at time t + (H− | ρ |) + O(log(n)) the
graphs Gρ0 and Gρ1 will also be connected.

Connecting every level
Since every node participates in O(log(n)) levels, connecting each
level takes O(log2(n))

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 30 / 35

How it works: Bottom-up

Connecting higher levels
If Gρ is connected at time t then at time t + (H− | ρ |) + O(log(n)) the
graphs Gρ0 and Gρ1 will also be connected.

Connecting every level
Since every node participates in O(log(n)) levels, connecting each
level takes O(log2(n))

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 30 / 35

How it works: Top-down

We merge already sorted to build the lower levels:

i-finished
The graph is i-finished if ∀ρ with | ρ |= i , Gρ contains all edges of the
final Skip+ Graph and is stably connected to all nodes in his range.

Moving down
If at time t the graph is i-finished, at time t + 3 it will be
(i − 1)− finished .

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 31 / 35

How it works: Top-down

We merge already sorted to build the lower levels:

i-finished
The graph is i-finished if ∀ρ with | ρ |= i , Gρ contains all edges of the
final Skip+ Graph and is stably connected to all nodes in his range.

Moving down
If at time t the graph is i-finished, at time t + 3 it will be
(i − 1)− finished .

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 31 / 35

How it works: Top-down

We merge already sorted to build the lower levels:

i-finished
The graph is i-finished if ∀ρ with | ρ |= i , Gρ contains all edges of the
final Skip+ Graph and is stably connected to all nodes in his range.

Moving down
If at time t the graph is i-finished, at time t + 3 it will be
(i − 1)− finished .

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 31 / 35

Summary

Connecting all levels takes O(log2(n)) rounds
Ordering all levels adds O(log(n)) rounds
Overall complexity is O(log2(n))

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 32 / 35

Node join / departure

The Skip+ Graph has degree O(log(n))

When a node joins/leaves only the neighbors are involved
At most O(log4(n)) work (edge inserts)
Joins / Leaves can be handled O(log(n)) rounds

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 33 / 35

References

Skip Graphs, James Aspnes and Gauri Shah, Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 384-393,
Baltimore, MD, USA, 12â14 January 2003
A distributed polylogarithmic time algorithm for self-stabilizing skip
graphs, Riko Jacob, Andrea Richa, Christian Scheideler, Stefan
Schmid, and Hanjo Täubig, PODC 09: Proceedings of the 28th
ACM symposium on Principles of distributed computing, pages
131â140, New York, NY, USA, 2009. ACM

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 34 / 35

Questions?

Christian Decker () Polylog Algorithm for Skip-Graphs Distributed Computing Seminar 35 / 35

	Skip Graphs
	ALG+
	Idea
	Rules

	How it works
	Bottom-Up
	Top-Down

	Summary
	Node join / departure

