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What is a DHT and what is it used for?

Datastructure for storage of data.
Scalable
Decentralized
High fault tolerance
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How to create a simple DHT
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Weaknesses of our Ring design

Long search/put/get operations
Single failures result in unrecoverable state
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Multiple Rings?
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The idea behind Skip Graphs

We generalize the idea of having multiple lists:
Each node participates in multiple rings/lists

Each node has a random String rs, of sufficient length
Each ring/list is identified by a prefix of length i
A node participates in a list if its rs matches the prefix of the list
(prei(u))
Each node has a successor (succi(u)) and predecessor (predi(u))
in each list it is participating in
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The complete picture
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Summary: Skip Graphs

Logarithmic diameter
Hypercubic-style Routing in O(log(n))

Not locally verifiable
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Goals

Start from any weakly connected graph
O(log2(n)) rounds to stabilize
Fast node join and departure once stabilized
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Idea

Divide the algorithm in two phases:
1 Bottom-up phase: create connected ρ-components for all prefixes
ρ

2 Top-Down phase: sort each list by merging the the already sorted
ρ1- and ρ0-components into a ρ-component
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Idea

It’s nothing more than distributed merge sort.
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Tools
We have to slightly extend the original Skip Graph:

Extended Predecessor/Successor
Instead of considering just predecessor and successor from our prefix
we already look ahead at the next bit:

pred∗i (v , x) = pred(v , {w |prei+1(w) = prei(v) ◦ x})

succ∗i (v , x) = succ(v , {w |prei+1(w) = prei(v) ◦ x})

Range
Take the farthest away of successor and predecessor. All nodes in
between will be in the range and will be the neighbors of the current
node:

v .range∗[i] = [min{pred∗i (v , x)},max{succ∗i (v , x)}]
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The final Picture
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Tools

Stable / Temporary edges
Edges are either temporary or stable. Edges are considered stable if
(from the local view of the node) it will appear in the finished Skip+
Graph. Stable edges are represented by a local flag u.F (v) = 1

ρ-component
A subgraph of all nodes sharing the prefix ρ.

ρ-Buddy
Each node has a Buddy at each level | ρ |= i which differs at the last
bit. These are used to pass temporary to better fitting candidates.
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Basic operations

insert(u, v) is the basic operation of the algorithm.
Any node w issues an insert(u, v) operation to a node u telling it to
add v to its neighborhood.
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Rounds

Preprocessing
I Process all insert(u, v) requests by adding them as temporary

(u.F (v) = 0)
I Check liveness of neighbors and remove failed ones
I For every i determine predi (u,0), predi (u,1), succi (u,0) and

succi (u,1)
I Send state updates to neighbors

Execute Rules according to local state
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Rules

Rule 1a: Create reverse edges
For every stable edge (u, v), u sets u.F (v) = 1 and initiates an
insert(v ,u)

Rule 1b and 1c: Introduce Stable Edges
u initiates insert(v ,w) and insert(w , v) for every neighbors w in the
range of v (prei(v) = prei(w) and w .id ∈ v .range[i])
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Rules

Rule 2: Forward Temporary Edges
Every temporary edge (u, v) is forwarded to a stable neightbor of u
that has the largest common prefix with v .rs
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Rules

Rule 3a: Introduce All
Every node u that has changed its stable edge set (destabilizing or
stabilizing edges) they introduce all neighbors with each other.

insert(u, v) u, v ∈ N(w)

Rule 3b: Linearize
u identifies stable neighbors (v1, . . . , vk ), with common prefix of length
i , orders them by vk .id and executes insert(v1, v2), insert(v2, v3), . . . ,
insert(vk−1, vk )
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How it works: Bottom-up

Remember that we want to create connected components for each
non-trivial prefix ρ

ρ-connected graphs stay connected
If a and b are ρ-connected at time t0, then they’ll be ρ-connected at any
t > t0
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How it works: Bottom-up

σ-V-Links
If we have two nodes u and v with prefix ρx = σ and a node w with
prefix ρx̄ and u, v ∈ N(w), then u and v are said to be σ-V-Linked. If
two nodes are σ-V-Linked they’ll be σ-connected in the next round.
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How it works: Bottom-up

σ-k-Bridges
Two nodes a and b with prefix σ = ρx are in different components. c
(d) is a stable neighbor of a (b) with prefix ρx̄ . c and d are connected
at level | ρ | +k .
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How it works: Bottom-up

(σ, k)-pre-components
Two nodes in different ρx = σ components are in a
(σ, k)-pre-component if Gρ, each has a buddy in ρx̄ and they are
connected (directly, via a σ-V-Link or via a (σ, k ′)-bridge with k ′ ≤ k ).
After 4 rounds a and b are σ-connected.
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How it works: Bottom-up

Bubbling up temporary edges
A temporary edge (u, v) at level l either stabilizes, or forwarded to l + 1.
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How it works: Bottom-up

Connecting higher levels
If Gρ is connected at time t then at time t + (H− | ρ |) + O(log(n)) the
graphs Gρ0 and Gρ1 will also be connected.

Connecting every level
Since every node participates in O(log(n)) levels, connecting each
level takes O(log2(n))
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How it works: Top-down

We merge already sorted to build the lower levels:

i-finished
The graph is i-finished if ∀ρ with | ρ |= i , Gρ contains all edges of the
final Skip+ Graph and is stably connected to all nodes in his range.

Moving down
If at time t the graph is i-finished, at time t + 3 it will be
(i − 1)− finished .
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Summary

Connecting all levels takes O(log2(n)) rounds
Ordering all levels adds O(log(n)) rounds
Overall complexity is O(log2(n))
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Node join / departure

The Skip+ Graph has degree O(log(n))

When a node joins/leaves only the neighbors are involved
At most O(log4(n)) work (edge inserts)
Joins / Leaves can be handled O(log(n)) rounds
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Questions?
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