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Filtering Documents
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Content-Based Methods

� Find other popular items by the same author or similar 
keywords

� Recommendation quality is relatively poor
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Filtering Music
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Filtering Jokes
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www.xkcd.org



Filtering Jokes

� Let the users rate the jokes
� Sort by average rating
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Collaborative Filtering

� People who have agreed in the past tend to agree in the 
future

Mittwoch, 28. April 2010 7



Good or Bad?
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Die Hard (1988) Dirty Dancing (1987)



Good or Bad?
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Jester 4.0 (http://eigentaste.berkeley.edu)
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MovieLens (http://movielens.org)
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Netflix

� www.netflix.org
� DVD/Blue-Ray rental and video streaming
� 1’000’000$ for the first beating the current recommendation 

algorithm by 10%

� Competition started in October 2006
� Ended July 2009
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GroupLens: An Open Architecture for Collaborative 
Filtering of NetNews

Research paper from 1994 by:
� Paul Resnick, MIT Center for Coordination Science
� Neophytos Iacovou, University of Minnesota� Neophytos Iacovou, University of Minnesota
� Mitesh Suchak, MIT Center for Coordination Science
� Peter Bergstrom , University of Minnesota
� John Riedl , University of Minnesota
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NetNews
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Problems of NetNews

Signal to noise ratio is too low

� Splitting bulletin board into newsgroups
� Moderated newsgroups
� News clients

� Summary of the author and subject line
� Display discussion threads together
� String search facilities
� Kill files
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Modification to NetNews
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Predicting Scores

� Score prediction system is robust to certain differences of 
interpretation of the rating scale
� One user rates 3-5 and the other 1-3
� One thinks 1 and the other 5 is best score
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Predicting Scores

� Predictions can be modeled as matrix filling

Item # Ken Lee Meg Nan

1 1 4 2 2
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1 1 4 2 2

2 5 2 4 4

3 3

4 2 5 5

5 4 1 1

6 ? 2 5



Predicting Scores

� Assign similarities to each of the other people
� Compute over articles rated by both
� Pearson Correlation Coefficients

� Between -1 and 1
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Predicting Scores

� Correlation Coefficients of Ken

User Correlation

Lee -0.8

# Ken Lee Meg Nan

1 1 4 2 2
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Lee -0.8

Meg +1

Nan 0

1 1 4 2 2

2 5 2 4 4

3 3

4 2 5 5

5 4 1 1

6 ? 2 5



Predicting Scores

� Weighted average of all ratings on article 6
� Ken’s prediction is 4.56
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Scaling Issues

� Relevant performance measures
� Prediction quality
� Compute time and disk storage

� Rating is small, but each article may be rated by many � Rating is small, but each article may be rated by many 
users

� Volume of ratings could exceed volume of news
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Scaling Issues 

� Pre-fetching ratings and pre-computing predictions keeps 
user time constant

� High computation complexity

� Volume of all ratings may exceed the storage capacity
� 100’000 users rate 10 articles per day. 100 bytes are required to 

store a rating. 1GB of storage required per 10 days.
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Cluster Models

Mittwoch, 28. April 2010 25



Cluster Models

� Better online scalability and performance than classical 
collaborative filtering

� Complex and extensive clustering is run offline

� Prediction quality gets reduced
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Item-to-Item Collaborative Filtering
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Item-to-Item Collaborative Filtering

� Amazon.com extensively uses recommendation algorithms
� 10’000’000 products and customers

� Result returned in real-time (< 0.5s)
� Algorithm must respond immediately to new information
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Amazon.com 
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Amazon.com
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Amazon.com
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Amazon.com
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How It Works - Offline

� Similar-items table
� Calculating similarity between a single product and all 

related products
� Complexity: O(mn2)  - in practice: O(mn)

� m: number of users� m: number of users

� n: number of items
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How It Works - Online

� Given a similar-items table
� Find all similar items to each of the users ratings and 

purchases
� Aggregate those items
� Recommend most popular and correlated items
� Number of users has no effect on performance
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General difficulties

� Cold start
� Self-fulfilling prophecy
� Recommendations for groups
� Evaluation of recommendation systems� Evaluation of recommendation systems
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Conclusion

� Effective form of targeted marketing

� Mostly used in e-commerce business� Mostly used in e-commerce business
� But can always be used when signal to noise ratio is too low
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Questions?
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