Local Algorithms on Grids

Jukka Suomela • Aalto University

arXiv:1702.05456

"LCL Problems on Grids", joint work with:

- Janne H Korhonen, Tuomo Lempiäinen, Christopher Purcell, Patric RJ Östergård (Aalto)
- Sebastian Brandt, Przemysław Uznański (ETH)
- Juho Hirvonen (Paris Diderot)
- Joel Rybicki (Helsinki)

Introduction

Setting

- Distributed graph algorithms
- Input graph = computer network
- node = computer, edge = communication link
- unknown topology
- Each node outputs its own part of solution
- e.g. graph colouring: node outputs its own colour

Setting

- Deterministic distributed algorithms, LOCAL model of computing
- unique identifiers
- synchronous communication rounds
- time = number of rounds until all nodes stop
- unlimited message size, unlimited local computation

Setting

- Deterministic distributed algorithms, LOCAL model of computing
- Time = distance
- Algorithm with running time T : mapping from radius-T neighbourhoods to local outputs

LCL problems

- LCL = locally checkable labelling
- Naor-Stockmeyer (1995)
- Valid solution can be detected by checking O (1)-radius neighbourhood of each node
- maximal independent set, maximal matching, vertex colouring, edge colouring ...

LCL problems

- All LCL problems can be solved with O(1)-round nondeterministic algorithms
- guess a solution, verify it in $O(1)$ rounds
- Key question: how fast can we solve them with deterministic algorithms?
- cf. P vs. NP

Traditional settings

- Directed cycles
- Cole-Vishkin (1986), Linial (1992)...
- well understood

- General (bounded-degree) graphs
- lots of ongoing work...
- typical challenge:
expander-like constructions

Our setting today

- Oriented grids (2D)

- toroidal grid, $n \times n$ nodes, unique identifiers
- consistent orientations north/east/south/west
- Generalisation of directed cycles (1D)
- Closer to real-world systems than expander-like worst-case constructions?

1D grids

- Vertex colouring

- 2-colouriing: global, $\Theta(n)$ rounds
- 3-colouring: local, ©(log* n) rounds
- Cole-Vishkin (1986), Linial (1992)

Why is $\mathbf{3}$-colouring $\boldsymbol{\Theta}\left(\log ^{*} n\right)$?

- Upper bound: one-round collour reduction
- input: colouring with 2^{k} colours
- output: colouring with $2 k$ colours
- Lower bound: speed-up lemma
- given: algorithm for k-colouring in time T
- construct: algorithm for 2^{k}-colouring in time T - 1

1D grids

- Vertex colouring

- 2-colouriing: global, $\Theta(n)$ rounds
- 3-colouring: local, ©(log* n) rounds
- Cole-Vishkin (1986), Linial (1992)

2D grids

- Vertex colouring
- 2-colouring: global, $\Theta(n)$ rounds
- 3-collouring: ???
- 4-colouring: ???
- 5-colouring: local, ©(log* n) rounds

2D grids

- Vertex colouring
- 2-colouriing: global, $\Theta(n)$ rounds
- 3-colouring: global, $\Theta(n)$ rounds
- 4-colouring: local, ©(log* n) rounds
- 5-colouring: local, ©(log* n) rounds

Classification of LCL problems

LCL problems on grids

- O(1) time: "trivial"
- o(log* n) time implies $O(1)$ time (Naor-Stockmeyer)
- $\Theta(l o g * n)$ time: "local"
- O(n) time: "global"
- Why nothing between local and global?

Normalisation

- Setting: LCL problems, 2D grids
- Theorem: Any o(n)-time algorithm can be translated to a "normal form":

1. fixed $\Theta\left(\right.$ log $\left.^{*} n\right)$-time component
2. problem-specific $O(1)$-time component

(92) (33) 77 (57) (49) 26 (74)	(0) 0 0 1 0 0 0	
(71) (79) 8) 62 (48) (24) 55	(01)000 00	
(31) (21) 15 (30) 60 3 3	(0) 1 10 001	
(0) (5) 17 (95) (23) 47) 98	(1)000 000	
(87) (80) 25 (38) 2048	(0) 0 100 10	
(45) (61) (91) 51 (69) 1 (99	(0) 1) (0) 1) 0 (0)	$\bigcirc \bigcirc$
(58) 53) 63) 40 (16) 2 (39	(0) 0 (1)000 0	
O(log* n)	O(1)	

Normalisation in more detail...

- For any problem P of complexity $o(n)$, there are constants k and r and function f such that P can be solved as follows:
- input: 2D grid G with unique identifiers
- find a maximal independent set in G^{k}
- discard unique identifiers
- apply function f to each $r \times r$ neighbourhood

Some proof ideas...

- Given: A solves P in time o(n) in $n \times n$ grids
- Solving P in time $O\left(\log ^{*} N\right)$ in $N \times N$ grids:
- pick suitable $n=O(1), k=O(1)$
- find a maximal independent set (MIS) in G^{k}
- use MIS to find locally unique identifiers for $n \times n$ neighbourhoods
- simulate A in $n \times n$ local neighbourhoods

LCL problems on grids

- O(1) time: "trivial"
- o(log* n) time implies $O(1)$ time (Naor-Stockmeyer)
- $\Theta\left(l{ }^{\prime}{ }^{*} n\right)$ time: "local"
- $o(n)$ time implies $O\left(\right.$ log* $^{*} n$) time (normalisation)
- O(n) time: "global"

Vertex colouring

- Every LCL problem is trivial, local, or global
- Why is 4 -colouring in 2D grids "local"?
- Why is 3 -colouring in 2D grids "global"?

4-colouring on grids

4-colouring

-Lucky guess: maybe it is local?

- Try to use computers to find normal form
- turns out it is enough to find an MIS in G^{3}, then consider 7×5 tiles
- algorithm \approx mapping $\{0,1\}^{7 \times 5} \rightarrow\{1,2,3,4\}$
- only 2079 possible tiles, easy to find a solution

$$
\begin{gathered}
\text { 3-colouring } \\
\text { on grids }
\end{gathered}
$$

3-colouring

- Inherently different from 4-colouring:
- cannot be solved locally
- But also different from 2-colouring:
- nontrivial to argue that the problem is global

Proof idea

- Assume: a local algorithm for 3 -colouring in $n \times n$ grids
- Implication: a local algorithm for "sum coordination" in n-cycles
- But we can prove that this problem is global

Consider any feasible 3-colouring...

We can convert it into a greedy solution in constant time (eliminate colour 2 whenever possible, then colour 3)

Greedy solution: boundaries + 2-colloured regions

Parity changes at each boundary

Parity changes at each boundary
even \times even

Wrap around: same parity
odd \times odd

Wrap around: opposite parity
even \times even

odd \times odd

Boundaries can be oriented with local rules (keep orange on right, white on left)
even \times even

odd \times odd

Pick any row, label looundary crossings with +1 / -1

$$
\text { up }=+1, \text { down }=-1
$$

even \times even

Sum of crossings: even
odd \times odd

Sum of crossings:
odd
even \times even

Sum of crossings: even
odd \times odd

Sum of crossings:
odd
even \times even

odd \times odd

Boundaries are closed curves: constant sum

$$
\text { up }=+1, \text { down }=-1
$$

even \times even

odd \times odd

Locality: sum only depends on grid dimensions, not on IDs (otherwise we could construct one instance with non-constant sum)

Sum coordination

- What any 3-colouring algorithms has to solve for every row of the grid:
- label nodes with $\{+1,0,-1\}$
- there is some function q so that the sum of labels is $q(n)$ in any n-cycle, regardless of unique identifiers
- $q(n)$ odd iff n is odd: cannot label everything with 0
- $|q(n)|$ not too large: cannot label everything with +1

Sum coordination

- What any 3-colouring algorithms has to solve for every row of the grid
- Requires global coordination

Conclusions

Conclusions: LCLs on grids

- Only three complexity classes in 2D grids: trivial $O(1)$, local $\Theta\left(l o g^{*} n\right)$, global $\Theta(n)$
- 4-colouring is local: algorithm synthesis
- 3-colouring is gllobal: sum coordination
- Can be generalised to d-dimensional grids!

