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Introduction



Setting

• Distributed graph algorithms

• Input graph = computer network
• node = computer, edge = communication link
• unknown topology

• Each node outputs its own part of solution
• e.g. graph colouring: node outputs its own colour



Setting

• Deterministic distributed algorithms,
LOCAL model of computing
• unique identifiers
• synchronous communication rounds
• time = number of rounds until all nodes stop
• unlimited message size,

unlimited local computation



Setting

• Deterministic distributed algorithms,
LOCAL model of computing

• Time = distance

• Algorithm with running time T:
mapping from radius-T
neighbourhoods to local outputs



LCL problems

• LCL = locally checkable labelling
• Naor–Stockmeyer (1995)

• Valid solution can be detected by checking 
O(1)-radius neighbourhood of each node
• maximal independent set, maximal matching,

vertex colouring, edge colouring …



LCL problems

• All LCL problems can be solved with
O(1)-round nondeterministic algorithms
• guess a solution, verify it in O(1) rounds

• Key question: how fast can we solve them 
with deterministic algorithms?
• cf. P vs. NP



Traditional settings

• Directed cycles
• Cole–Vishkin (1986), Linial (1992)…
• well understood

• General (bounded-degree) graphs
• lots of ongoing work…
• typical challenge:

expander-like constructions



Our setting today

• Oriented grids (2D)
• toroidal grid, n × n nodes, unique identifiers
• consistent orientations north/east/south/west

• Generalisation of directed cycles (1D)

• Closer to real-world systems than
expander-like worst-case constructions?



1D grids

• Vertex colouring

• 2-colouring: global, Θ(n) rounds

• 3-colouring: local, Θ(log* n) rounds
• Cole–Vishkin (1986), Linial (1992)



Why is 3-colouring Θ(log* n)?

• Upper bound: one-round colour reduction
• input: colouring with 2k colours
• output: colouring with 2k colours

• Lower bound: speed-up lemma
• given: algorithm for k-colouring in time T
• construct: algorithm for 2k-colouring in time T − 1



1D grids

• Vertex colouring

• 2-colouring: global, Θ(n) rounds

• 3-colouring: local, Θ(log* n) rounds
• Cole–Vishkin (1986), Linial (1992)



2D grids

• Vertex colouring

• 2-colouring: global, Θ(n) rounds

• 3-colouring: ???

• 4-colouring: ???

• 5-colouring: local, Θ(log* n) rounds



2D grids

• Vertex colouring

• 2-colouring: global, Θ(n) rounds

• 3-colouring: global, Θ(n) rounds

• 4-colouring: local, Θ(log* n) rounds

• 5-colouring: local, Θ(log* n) rounds



Classification of 
LCL problems



LCL problems on grids

• O(1) time: “trivial”
• o(log* n) time implies O(1) time (Naor–Stockmeyer)

• Θ(log* n) time: “local”

• Θ(n) time: “global”

• Why nothing between local and global?



Normalisation

• Setting: LCL problems, 2D grids

• Theorem: Any o(n)-time algorithm can be 
translated to a “normal form”:
1. fixed Θ(log* n)-time component
2. problem-specific O(1)-time component
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Normalisation in more detail…

• For any problem P of complexity o(n),
there are constants k and r and function f
such that P can be solved as follows:
• input: 2D grid G with unique identifiers
• find a maximal independent set in Gk

• discard unique identifiers
• apply function f to each r × r neighbourhood



Some proof ideas…

• Given: A solves P in time o(n) in n × n grids

• Solving P in time O(log* N) in N × N grids:
• pick suitable n = O(1), k = O(1)
• find a maximal independent set (MIS) in Gk
• use MIS to find locally unique identifiers for
n × n neighbourhoods

• simulate A in n × n local neighbourhoods



LCL problems on grids

• O(1) time: “trivial”
• o(log* n) time implies O(1) time (Naor–Stockmeyer)

• Θ(log* n) time: “local”
• o(n) time implies O(log* n) time (normalisation)

• Θ(n) time: “global”



Vertex colouring

• Every LCL problem is trivial, local, or global

• Why is 4-colouring in 2D grids “local”?

• Why is 3-colouring in 2D grids “global”?



4-colouring
on grids



4-colouring

• Lucky guess: maybe it is local?

• Try to use computers to find normal form
• turns out it is enough to find an MIS in G3,

then consider 7 × 5 tiles
• algorithm ≈ mapping {0, 1}7 × 5 → {1, 2, 3, 4}
• only 2079 possible tiles, easy to find a solution









3-colouring
on grids



3-colouring

• Inherently different from 4-colouring:
• cannot be solved locally

• But also different from 2-colouring:
• nontrivial to argue that the problem is global



2-colouring 3-colouring 4-colouring

global global local







Proof idea

• Assume: a local algorithm
for 3-colouring in n × n grids

• Implication: a local algorithm
for “sum coordination” in n-cycles

• But we can prove that this problem is global



even × even odd × odd

Consider any feasible 3-colouring…



even × even odd × odd

We can convert it into a greedy solution in constant time
(eliminate colour 2 whenever possible, then colour 3)



even × even odd × odd

Greedy solution: boundaries + 2-coloured regions



even × even odd × odd

Parity changes at each boundary



even × even odd × odd

Parity changes at each boundary



even × even odd × odd

Wrap around:
same parity

Wrap around:
opposite parity



even × even odd × odd

Boundaries can be oriented with local rules
(keep orange on right, white on left)



even × even odd × odd

Pick any row, label boundary crossings with +1 / −1
up = +1, down = −1

0 −1



even × even odd × odd

Sum of crossings:
even

Sum of crossings:
odd

0 −1



even × even odd × odd

Sum of crossings:
even

Sum of crossings:
odd

0 −1



even × even odd × odd

Boundaries are closed curves: constant sum
up = +1, down = −1
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even × even odd × odd

Locality: sum only depends on grid dimensions, not on IDs
(otherwise we could construct one instance with non-constant sum)
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Sum coordination

• What any 3-colouring algorithms has to 
solve for every row of the grid:
• label nodes with {+1, 0, −1}
• there is some function q so that the sum of labels is 
q(n) in any n-cycle, regardless of unique identifiers

• q(n) odd iff n is odd: cannot label everything with 0
• |q(n)| not too large: cannot label everything with +1



Sum coordination

• What any 3-colouring algorithms has to 
solve for every row of the grid

• Requires global coordination



Conclusions



2-colouring 3-colouring 4-colouring

global global local



Conclusions: LCLs on grids

• Only three complexity classes in 2D grids:
trivial O(1), local Θ(log* n), global Θ(n)

• 4-colouring is local: algorithm synthesis

• 3-colouring is global: sum coordination

• Can be generalised to d-dimensional grids!




