Local Algorithms on Grids

Jukka Suomela · Aalto University

arXiv:1702.05456

- "LCL Problems on Grids", joint work with:
- Janne H Korhonen, Tuomo Lempiäinen, Christopher Purcell, Patric RJ Östergård (Aalto)
- Sebastian Brandt, Przemysław Uznański (ETH)
- Juho Hirvonen (Paris Diderot)
- Joel Rybicki (Helsinki)

Introduction

Setting

- Distributed graph algorithms
- Input graph = computer network
 - node = computer, edge = communication link
 - unknown topology
- Each node outputs its own part of solution
 - e.g. graph colouring: node outputs its own colour

Setting

- Deterministic distributed algorithms, LOCAL model of computing
 - unique identifiers
 - synchronous communication rounds
 - time = number of rounds until all nodes stop
 - unlimited message size, unlimited local computation

Setting

- Deterministic distributed algorithms, LOCAL model of computing
- Time = distance
- Algorithm with running time T: mapping from radius-T neighbourhoods to local outputs

LCL problems

- LCL = locally checkable labelling
 - Naor–Stockmeyer (1995)
- Valid solution can be detected by checking O(1)-radius neighbourhood of each node
 - maximal independent set, maximal matching, vertex colouring, edge colouring ...

LCL problems

- All LCL problems can be solved with O(1)-round *nondeterministic* algorithms
 - guess a solution, verify it in O(1) rounds
- Key question: how fast can we solve them with deterministic algorithms?
 - cf. P vs. NP

Traditional settings

- Directed cycles
 - Cole–Vishkin (1986), Linial (1992)...
 - well understood

- General (bounded-degree) graphs
 - lots of ongoing work...
 - typical challenge:
 expander-like constructions

Our setting today

- Oriented grids (2D)
 - toroidal grid, $n \times n$ nodes, unique identifiers
 - consistent orientations north/east/south/west
- Generalisation of directed cycles (1D)
- Closer to real-world systems than expander-like worst-case constructions?

Vertex colouring

- 2-colouring: global, $\Theta(n)$ rounds
- **3-colouring:** local, Θ(log* *n*) rounds
 - Cole–Vishkin (1986), Linial (1992)

Why is 3-colouring Θ(log* n)?

- Upper bound: one-round colour reduction
 - input: colouring with 2^k colours
 - output: colouring with 2k colours
- Lower bound: *speed-up lemma*
 - given: algorithm for *k*-colouring in time *T*
 - construct: algorithm for 2^k-colouring in time T 1

Vertex colouring

- 2-colouring: global, $\Theta(n)$ rounds
- **3-colouring:** local, Θ(log* *n*) rounds
 - Cole–Vishkin (1986), Linial (1992)

- 2-colouring: global, ⊖(n) rounds
- 3-colouring: ???
- 4-colouring: ???
- **5-colouring:** local, Θ(log* *n*) rounds

- Vertex colouring
- 2-colouring: global, ⊖(n) rounds
- 3-colouring: global, Θ(n) rounds
- 4-colouring: local, Θ(log* n) rounds
- **5-colouring:** local, Θ(log* *n*) rounds

Classification of LCL problems

LCL problems on grids

- O(1) time: "trivial"
 - o(log* n) time implies O(1) time (Naor–Stockmeyer)
- Θ(log* *n*) time: "local"
- Θ(*n*) time: "global"
- Why nothing between local and global?

Normalisation

- Setting: LCL problems, 2D grids
- Theorem: Any o(n)-time algorithm can be translated to a "normal form":
 - 1. fixed $\Theta(\log^* n)$ -time component
 - 2. problem-specific O(1)-time component

(92) (49)(26)33 (57 74 0 1 0 0 0 0 (62)(55)MIS 79 8 (48)(24) 0 0 0 0 1 0 f (60)(67) (15) (30)0 31 21 3 0 0 0 1 U (23)(47)(98)5 (95)0 17 0 0 0 1 0 0 (88)(87 (80)(25) (38)(20)(64) · 1 0 0 0 0 0 ' **1** ' (99)(91)(51)(69) 45 (61)0 0 0 0 0 1 (39)2 (58) (53)(63)(40)(16)0 1 0 0 0 0 1 **O**(log* *n*) **O(1)**

Normalisation in more detail...

- For any problem P of complexity o(n), there are constants k and r and function f such that P can be solved as follows:
 - input: 2D grid G with unique identifiers
 - find a *maximal independent set in G^k*
 - discard unique identifiers
 - apply function *f* to each *r* × *r* neighbourhood

Some proof ideas...

- Given: A solves P in time o(n) in $n \times n$ grids
- Solving *P* in time O(log* N) in N × N grids:
 - pick suitable n = O(1), k = O(1)
 - find a maximal independent set (MIS) in G^k
 - use MIS to find *locally unique identifiers* for *n* × *n* neighbourhoods
 - simulate A in $n \times n$ local neighbourhoods

LCL problems on grids

- O(1) time: "trivial"
 - o(log* n) time implies O(1) time (Naor–Stockmeyer)
- Θ(log* *n*) time: "local"
 - *o*(*n*) time implies *O*(log* *n*) time (*normalisation*)
- Θ(*n*) time: "global"

Vertex colouring

- Every LCL problem is trivial, local, or global
- Why is **4-colouring** in 2D grids "local"?
- Why is **3-colouring** in 2D grids "global"?

4-colouring on grids

4-colouring

- Lucky guess: maybe it is local?
- Try to use computers to find normal form
 - turns out it is enough to find an MIS in G³, then consider 7 × 5 tiles
 - algorithm \approx mapping $\{0, 1\}^{7 \times 5} \rightarrow \{1, 2, 3, 4\}$
 - only **2079** possible tiles, easy to find a solution

3-colouring on grids

3-colouring

- Inherently different from 4-colouring:
 - cannot be solved locally
- But also different from 2-colouring:
 - nontrivial to argue that the problem is global

Proof idea

- Assume: a local algorithm for 3-colouring in n × n grids
- Implication: a local algorithm for "sum coordination" in *n-cycles*
- But we can prove that this problem is global

Consider any feasible 3-colouring...

We can convert it into a *greedy* solution in constant time (eliminate colour 2 whenever possible, then colour 3)

Greedy solution: *boundaries* + 2-coloured regions

Parity changes at each boundary

odd × odd

Parity changes at each boundary

even × even

Wrap around: same parity Wrap around: **opposite** parity

Boundaries can be *oriented* with local rules (keep orange on right, white on left)

Pick any row, label *boundary crossings* with +1 / -1up = +1, down = -1

$odd \times odd$

Sum of crossings: even

Sum of crossings: odd

odd × odd

Sum of crossings: even

Sum of crossings: odd

odd × odd

Boundaries are closed curves: constant sum up = +1, down = -1

Locality: sum only depends on *grid dimensions*, not on IDs (otherwise we could construct one instance with non-constant sum)

Sum coordination

- What any 3-colouring algorithms has to solve for every row of the grid:
 - label nodes with {+1, 0, -1}
 - there is some function *q* so that the *sum of labels* is *q(n)* in any *n*-cycle, regardless of unique identifiers
 - q(n) odd iff *n* is odd: cannot label everything with 0
 - |q(n)| not too large: cannot label everything with +1

Sum coordination

- What any 3-colouring algorithms has to solve for every row of the grid
- Requires global coordination

Conclusions

Conclusions: LCLs on grids

- Only three complexity classes in 2D grids: trivial O(1), local Θ(log* n), global Θ(n)
- 4-colouring is local: algorithm synthesis
- 3-colouring is global: sum coordination
- Can be generalised to *d*-dimensional grids!

. . • **F**. • . . . • . . . C C C • • . • . -