ETH zürich

An Improved Distributed Algorithm for Maximal Independent Set

Erfan Abdi

Introduction to Distributed Computing

Maximal Independent Set

Luby's Algorithm

Ghaffari's Algorithm

Local Complexity of Ghaffari's Algorithm

Global complexity of Ghaffari's Algorithm

Introduction to Distributed Computing

Maximal Independent Set

Luby's Algorithm

Ghaffari's Algorithm

Local Complexity of Ghaffari's Algorithm

Global complexity of Ghaffari's Algorithm

Distributed Algorithm

The same algorithm on all Nodes

Complexity

- Global Complexity
 - All nodes with high probability (1 1/n)
- Local Complexity
 - Node v with probability at least 1-ε

Introduction to Distributed Computing

Maximal Independent Set

Luby's Algorithm

Ghaffari's Algorithm

Analysis of Ghaffari's Algorithm

Global complexity of Ghaffari's Algorithm

Independent Set

Not Independent Set

Distributed MIS

Distributed MIS

Lowerbound:
$$\Omega$$
 (min{log Δ , $\sqrt{\log n}$ })
If $\log \Delta \in [2^{O(\sqrt{\log \log n})}, \sqrt{\log n}]$
 $O(\log \Delta) + 2^{O(\sqrt{\log \log n})} = O(\log \Delta)$

Introduction to Distributed Computing

Maximal Independent Set

Luby's Algorithm

Ghaffari's Algorithm

Local Complexity of Ghaffari's Algorithm

Global complexity of Ghaffari's Algorithm

"In each round, each node picks a random number uniformly from [0,1]; strict local minimas join the MIS, and get removed from the graph along with their neighbours"

Analysis

• Global complexity $O(\log n)$ with probability $1 - \frac{1}{n}$

• Local Complexity $O(log^2\Delta + log_{\epsilon}^1)$ with probability $1 - \frac{1}{\epsilon}$

Introduction to Distributed Computing

Maximal Independent Set

Luby's Algorithm

Ghaffari's Algorithm

Local Complexity of Ghaffari's Algorithm

Global complexity of Ghaffari's Algorithm

| 31

| 32

| 33

| 34

| 35

| 36

| 37

| 38

| 39

| 40

| 41

| 42

| 43

Introduction to Distributed Computing

Maximal Independent Set

Luby's Algorithm

Ghaffari's Algorithm

Local Complexity of Ghaffari's Algorithm

Global complexity of Ghaffari's Algorithm

Local Complexity

• For each node v, the probability that v has not made its decision in the first $\beta(\log \deg + \log \frac{1}{\epsilon})$ is at most ϵ

Local Complexity (cont.)

- Golden rounds
 - a. rounds in which d(v) < 2 and $p(v) = \frac{1}{2}$
 - b. rounds in which $d(v) \ge 1$ and at least d(v)/10 of it is contributed by neighbors who have d(v) < 2

• By round $\beta(\log \deg + \log \frac{1}{\epsilon})$, at least one of golden round counts of node v reached $\frac{\beta}{13}(\log \deg + \log \frac{1}{\epsilon})$

Local Complexity (cont.)

Thus the probability that v does not get removed in the first β(log deg + log ¹/_ε) steps is at most

$$(1-\frac{1}{200})^{\frac{\beta}{13}(\log \deg + \log \frac{1}{\epsilon})}$$

Introduction to Distributed Computing

Maximal Independent Set

Luby's Algorithm

Ghaffari's Algorithm

Local Complexity of Ghaffari's Algorithm

Global complexity of Ghaffari's Algorithm

Global complexity

- After $O(log \Delta)$ shattering phenomenon happens
- Deterministic Algorithm in small components
- The overall complexity is

 $O(\log \Delta) + 2^{O(\sqrt{\log \log n})}$

Thank You!