
Seminar in Distributed Computing

Distributed Oblivious RAM for Secure

Two-Party Computation Steve Lu & Rafail Ostrovsky

Philipp Gamper

Philipp Gamper 2017-04-25 1



Yao’s millionaires problem

I Two millionaires1 wish to know who is richer

I They do not want share any information about each others

wealth

I How can they carry out such a conversation?

1in the following, Alice and Bob
Philipp Gamper 2017-04-25 2



Yao’s millionaires problem

I Two millionaires1 wish to know who is richer

I They do not want share any information about each others

wealth

I How can they carry out such a conversation?

1in the following, Alice and Bob
Philipp Gamper 2017-04-25 2



Yao’s millionaires problem

I Two millionaires1 wish to know who is richer

I They do not want share any information about each others

wealth

I How can they carry out such a conversation?

1in the following, Alice and Bob
Philipp Gamper 2017-04-25 2



Oblivious transfer (OT)

I Alice has two messages m0 and m1, Bob has a bit b

I Bob wishes to receive mb, without Alice learning b

I Alice wants Bob receiving only either of the two messages

Philipp Gamper 2017-04-25 3



Oblivious transfer (OT)

I Alice has two messages m0 and m1, Bob has a bit b

I Bob wishes to receive mb, without Alice learning b

I Alice wants Bob receiving only either of the two messages

Philipp Gamper 2017-04-25 3



Oblivious transfer (OT)

I Alice has two messages m0 and m1, Bob has a bit b

I Bob wishes to receive mb, without Alice learning b

I Alice wants Bob receiving only either of the two messages

Philipp Gamper 2017-04-25 3



Oblivious transfer (OT)

I Alice has two messages m0 and m1, Bob has a bit b

I Bob wishes to receive mb, without Alice learning b

I Alice wants Bob receiving only either of the two messages

Philipp Gamper 2017-04-25 3



Oblivious transfer (OT)

I Alice has two messages m0 and m1, Bob has a bit b

I Bob wishes to receive mb, without Alice learning b

I Alice wants Bob receiving only either of the two messages

Philipp Gamper 2017-04-25 3



Oblivious transfer (OT)

I Alice has two messages m0 and m1, Bob has a bit b

I Bob wishes to receive mb, without Alice learning b

I Alice wants Bob receiving only either of the two messages

Philipp Gamper 2017-04-25 3



Oblivious transfer (OT)

I Alice has two messages m0 and m1, Bob has a bit b

I Bob wishes to receive mb, without Alice learning b

I Alice wants Bob receiving only either of the two messages

Philipp Gamper 2017-04-25 3



Boolean circuits

I AND-gate and its corresponding truth table

u v w

0 0 0

0 1 0

1 0 0

1 1 1

Philipp Gamper 2017-04-25 4



Garbled circuits

I garble input / output wires by assigning keys / labels to them

I encrypt2 output wire using the keys of the input wires

I randomly permute the resulting truth table

u v w

k0
u k0

v k0
w

k0
u k1

v k0
w

k1
u k0

v k0
w

k1
u k1

v k1
w

2Enca,b(x) = Enca(Encb(x))
Philipp Gamper 2017-04-25 5



Garbled circuits

I garble input / output wires by assigning keys / labels to them

I encrypt2 output wire using the keys of the input wires

I randomly permute the resulting truth table

u v w

k0
u k0

v k0
w

k0
u k1

v k0
w

k1
u k0

v k0
w

k1
u k1

v k1
w

u v w

k0
u k0

v Enck0
u ,k0

v
(k0

w )

k0
u k1

v Enck0
u ,k1

v
(k0

w )

k1
u k0

v Enck1
u ,k0

v
(k0

w )

k1
u k1

v Enck1
u ,k1

v
(k1

w )

2Enca,b(x) = Enca(Encb(x))
Philipp Gamper 2017-04-25 5



Garbled circuits

I garble input / output wires by assigning keys / labels to them

I encrypt2 output wire using the keys of the input wires

I randomly permute the resulting truth table

u v w

k0
u k0

v k0
w

k0
u k1

v k0
w

k1
u k0

v k0
w

k1
u k1

v k1
w

u v w

k0
u k1

v Enck0
u ,k1

v
(k0

w )

k1
u k1

v Enck1
u ,k1

v
(k1

w )

k1
u k0

v Enck1
u ,k0

v
(k0

w )

k0
u k0

v Enck0
u ,k0

v
(k0

w )

2Enca,b(x) = Enca(Encb(x))
Philipp Gamper 2017-04-25 5



Garbled circuits

I evaluate the circuit gate by gate to

obtain the encrypted output

c d w

Enck0
u ,k0

v
(k0

c ) Enck0
x ,k0

y
(k0

d ) Enck0
c ,k0

d
(k0

w )

Enck0
u ,k1

v
(k0

c ) Enck0
x ,k1

y
(k0

d ) Enck0
c ,k1

d
(k0

w )

Enck1
u ,k0

v
(k0

c ) Enck1
x ,k0

y
(k0

d ) Enck1
c ,k0

d
(k0

w )

Enck1
u ,k1

v
(k1

c ) Enck1
x ,k1

y
(k1

d ) Enck1
c ,k1

d
(k1

w )

I Output translation [(0, k0
w ), (1, k1

w )]

Philipp Gamper 2017-04-25 6



Garbled circuits

I evaluate the circuit gate by gate to

obtain the encrypted output

c d w

Enck0
u ,k0

v
(k0

c ) Enck0
x ,k0

y
(k0

d ) Enck0
c ,k0

d
(k0

w )

Enck0
u ,k1

v
(k0

c ) Enck0
x ,k1

y
(k0

d ) Enck0
c ,k1

d
(k0

w )

Enck1
u ,k0

v
(k0

c ) Enck1
x ,k0

y
(k0

d ) Enck1
c ,k0

d
(k0

w )

Enck1
u ,k1

v
(k1

c ) Enck1
x ,k1

y
(k1

d ) Enck1
c ,k1

d
(k1

w )

I Output translation [(0, k0
w ), (1, k1

w )]

Philipp Gamper 2017-04-25 6



Garbled circuits

I evaluate the circuit gate by gate to

obtain the encrypted output

c d w

Enck0
u ,k0

v
(k0

c ) Enck0
x ,k0

y
(k0

d ) Enck0
c ,k0

d
(k0

w )

Enck0
u ,k1

v
(k0

c ) Enck0
x ,k1

y
(k0

d ) Enck0
c ,k1

d
(k0

w )

Enck1
u ,k0

v
(k0

c ) Enck1
x ,k0

y
(k0

d ) Enck1
c ,k0

d
(k0

w )

Enck1
u ,k1

v
(k1

c ) Enck1
x ,k1

y
(k1

d ) Enck1
c ,k1

d
(k1

w )

I Output translation [(0, k0
w ), (1, k1

w )]

Philipp Gamper 2017-04-25 6



Garbled circuits

I evaluate the circuit gate by gate to

obtain the encrypted output

c d w

Enck0
u ,k0

v
(k0

c ) Enck0
x ,k0

y
(k0

d ) Enck0
c ,k0

d
(k0

w )

Enck0
u ,k1

v
(k0

c ) Enck0
x ,k1

y
(k0

d ) Enck0
c ,k1

d
(k0

w )

Enck1
u ,k0

v
(k0

c ) Enck1
x ,k0

y
(k0

d ) Enck1
c ,k0

d
(k0

w )

Enck1
u ,k1

v
(k1

c ) Enck1
x ,k1

y
(k1

d ) Enck1
c ,k1

d
(k1

w )

I Output translation [(0, k0
w ), (1, k1

w )]

Philipp Gamper 2017-04-25 6



Garbled circuits

I evaluate the circuit gate by gate to

obtain the encrypted output

c d w

Enck0
u ,k0

v
(k0

c ) Enck0
x ,k0

y
(k0

d ) Enck0
c ,k0

d
(k0

w )

Enck0
u ,k1

v
(k0

c ) Enck0
x ,k1

y
(k0

d ) Enck0
c ,k1

d
(k0

w )

Enck1
u ,k0

v
(k0

c ) Enck1
x ,k0

y
(k0

d ) Enck1
c ,k0

d
(k0

w )

Enck1
u ,k1

v
(k1

c ) Enck1
x ,k1

y
(k1

d ) Enck1
c ,k1

d
(k1

w )

I Output translation [(0, k0
w ), (1, k1

w )]

Philipp Gamper 2017-04-25 6



A solution to the millionaires problem

1. Alice generates a garbled full adder circuit that outputs the

carry flag

2. Alice sends the circuit to Bob along with her encrypted input

3. Bob receives his encrypted inputs using oblivious transfer

4. Bob evaluates the circuit gate by gate to obtain his output

5. Alice and Bob communicate to learn the output

Philipp Gamper 2017-04-25 7



Oblivious RAM (ORAM)

Philipp Gamper 2017-04-25 8



Oblivious RAM (ORAM)

Def (informal): The sequence of memory access of an oblivious

RAM reveals no information about the input, beyond the running

time for the input

Philipp Gamper 2017-04-25 9



Trivial ORAM

I for every operation scan through entire memory

I obviously hides the access pattern

I BUT causes O(n) overhead

Philipp Gamper 2017-04-25 10



The „square root” solution

Philipp Gamper 2017-04-25 11



The „square root” solution - initialization

I randomly permute memory cells 1 to n +
√

n using a PRF π(i)

Philipp Gamper 2017-04-25 11



The „square root” solution - i-th step (i = 1, v = 3)

1. simulate
√

n memory accesses by reading cells n +
√

n + 1 to

n + 2
√

n

2. if v -th cell was found, access next dummy cell π(n + i) else

retrieve it from π(v )

3. keep the value of the v -th cell in the n +
√

n + i-th cell

Philipp Gamper 2017-04-25 11



The „square root” solution - i-th step (i = 1, v = 3)

1. simulate
√

n memory accesses by reading cells n +
√

n + 1 to

n + 2
√

n

2. if v -th cell was found, access next dummy cell π(n + i) else

retrieve it from π(v )

3. keep the value of the v -th cell in the n +
√

n + i-th cell

Philipp Gamper 2017-04-25 11



The „square root” solution - i-th step (i = 1, v = 3)

1. simulate
√

n memory accesses by reading cells n +
√

n + 1 to

n + 2
√

n

2. if v -th cell was found, access next dummy cell π(n + i) else

retrieve it from π(v )

3. keep the value of the v -th cell in the n +
√

n + i-th cell

Philipp Gamper 2017-04-25 11



The „square root” solution - i-th step (i = 1, v = 3)

1. simulate
√

n memory accesses by reading cells n +
√

n + 1 to

n + 2
√

n

2. if v -th cell was found, access next dummy cell π(n + i) else

retrieve it from π(v )

3. keep the value of the v -th cell in the n +
√

n + i-th cell

Philipp Gamper 2017-04-25 11



The „square root” solution - i-th step (i = 2, v = n)

I first access to cell v , retrieve from π(v ) after simulating
√

n

memory accesses

I keep the value of the v -th cell in the n +
√

n + i-th cell

Philipp Gamper 2017-04-25 11



The „square root” solution - i-th step (i = 2, v = n)

I first access to cell v , retrieve from π(v ) after simulating
√

n

memory accesses

I keep the value of the v -th cell in the n +
√

n + i-th cell

Philipp Gamper 2017-04-25 11



The „square root” solution - i-th step (i = 2, v = n)

I first access to cell v , retrieve from π(v ) after simulating
√

n

memory accesses

I keep the value of the v -th cell in the n +
√

n + i-th cell

Philipp Gamper 2017-04-25 11



The „square root” solution - i-th step (i = 3, v = 3)

I the v -th cell has been read before, access dummy cell π(n + i)

I after
√

n queries the cache is full

I reshuffling called oblivious sorting required

Philipp Gamper 2017-04-25 11



The „square root” solution - i-th step (i = 3, v = 3)

I the v -th cell has been read before, access dummy cell π(n + i)

I after
√

n queries the cache is full

I reshuffling called oblivious sorting required

Philipp Gamper 2017-04-25 11



The „square root” solution - i-th step (i = 3, v = 3)

I the v -th cell has been read before, access dummy cell π(n + i)

I after
√

n queries the cache is full

I reshuffling called oblivious sorting required

Philipp Gamper 2017-04-25 11



The „square root” solution - i-th step (i = 3, v = 3)

I the v -th cell has been read before, access dummy cell π(n + i)

I after
√

n queries the cache is full

I reshuffling called oblivious sorting required

Philipp Gamper 2017-04-25 11



Oblivious sorting

Def (informal): A sorting algorithm is called oblivious iff the

sequence of compare operations is independent of the input.

The general, very informal idea of oblivious sorting is as follows

I assign random tags to each memory cell

I sort the cells according to the tag

e.g., Bubble Sort is oblivious, while Quick Sort is not

Philipp Gamper 2017-04-25 12



The „square root” solution - Analysis

Overhead to perform n queries

I each query requires
√

n memory accesses

I there are
√

n queries per round, what requires
√

n ×
√

n = n

memory accesses

I
√

n-rounds ×
√

n-queries results in
∑√

n
i=1 n = n

√
n, thus

O(n
√

n)

I oblivious sorting requires O(nlog(n)), and O(
√

nlog(n)n) in total

I the overall overhead is O(
√

nlog(n))

Hence the ORAM simulation is dominated by the oblivious sorting

Philipp Gamper 2017-04-25 13



The „square root” solution - Analysis

Overhead to perform n queries

I each query requires
√

n memory accesses

I there are
√

n queries per round, what requires
√

n ×
√

n = n

memory accesses

I
√

n-rounds ×
√

n-queries results in
∑√

n
i=1 n = n

√
n, thus

O(n
√

n)

I oblivious sorting requires O(nlog(n)), and O(
√

nlog(n)n) in total

I the overall overhead is O(
√

nlog(n))

Hence the ORAM simulation is dominated by the oblivious sorting

Philipp Gamper 2017-04-25 13



Secure two party computation using ORAM

Philipp Gamper 2017-04-25 14



ORAM using a hierarchical data structure

Philipp Gamper 2017-04-25 15



ORAM using a hierarchical data structure

the idea remains the same as in the „square root” solution

1. fetch some records in order to obtain (v , x)

2. check whether x has been found or not

3. retrieve directly from π(v ) or do dummy access respectively

4. re-encrypt x and store back

5. reshuffle if „cache”, i.e., the root bucket, becomes full

Philipp Gamper 2017-04-25 15



The query (simplified)

I first query to cell v

Philipp Gamper 2017-04-25 16



The query (simplified)

I always traverse tree until reaching a leaf

Philipp Gamper 2017-04-25 16



The query (simplified)

I re-insert cell v in the next empty cell in the root bucket

Philipp Gamper 2017-04-25 16



The query (simplified)

I further queries to cell v

Philipp Gamper 2017-04-25 16



The query (simplified)

I again fetch until reaching a leaf node

Philipp Gamper 2017-04-25 16



The query (simplified)

I insert dummy cell, as v is already in the root bucket

Philipp Gamper 2017-04-25 16



The reshuffling (simplified)

I reshuffling required, if the root bucket becomes full

Philipp Gamper 2017-04-25 17



The reshuffling (simplified)

I all cells of the root bucket are pushed down to the 2nd-level

Philipp Gamper 2017-04-25 17



The reshuffling (simplified)

I while reshuffling level j , two new hash functions are chosen

Philipp Gamper 2017-04-25 17



The reshuffling (simplified)

I if j + 1-th level becomes full, it is reshuffled as well

Philipp Gamper 2017-04-25 17



The reshuffling (simplified)

I if the 2nd to i-th level are half full, level i eventually becomes full

Philipp Gamper 2017-04-25 17



The reshuffling (simplified)

I hence, the i + 1-th level ends up half full

Philipp Gamper 2017-04-25 17



Key ingredients

I levels are alternating distributed on the two server

I avoid oblivious sorting

I use „tagging”, that is PRF (i , ei , v ), where e is the epoch, i the

level and v the index of the record

I Cuckoo hashing with a stash to cause the buckets overflowing

with negligible probability

Philipp Gamper 2017-04-25 18



Analysis

I O(log(n)) computational overhead, if using a buckets of size

3 ∗ log(n)/log(log(n))

I O(1) client storage

I two servers using O(n) storage each

I negligible probability of an attacker is able to distinguish

between two query sequences

Philipp Gamper 2017-04-25 19



Secure two party computation

Two parties wish to compute some function f (x , y ) on their inputs x

and y

I let both parties play the role of one server each

I the client is shared between the two parties using secret

sharing

I only build atomic opration on the ORAM in circuits

I simulate the underlying circuit of f using ORAM

I communicate to learn the output

Philipp Gamper 2017-04-25 20



Secure two party computation

Two parties wish to compute some function f (x , y ) on their inputs x

and y

I let both parties play the role of one server each

I the client is shared between the two parties using secret

sharing

I only build atomic opration on the ORAM in circuits

I simulate the underlying circuit of f using ORAM

I communicate to learn the output

Philipp Gamper 2017-04-25 20



Conclusion

Philipp Gamper 2017-04-25 21



Conclusion

I we have seen a multi-server model for oblivious RAM using

O(1) client and O(n) server storage resulting in a only

O(log(n)) computational overhead

I a two-party secure RAM computation protocol, that is more

efficient than existing construction

Philipp Gamper 2017-04-25 22



References

I Towards a theory of software protection and simulation by oblivious RAMs –
Oded Goldreich

I Protocols for secure computations – Andrew Chi-Chih Yao

I Software protection and simulation on oblivious RAMs – Oded Goldreich, Rafail
Ostrovsky

I Efficient computation on oblivious rams – Rafail Ostrovsky

I Private information storage – Rafail Ostrovsky, VictorShoup

I More robust hashing: Cuckoo hashing with a stash – Adam Kirsch, Michael
Mitzenmacher, and Udi Wieder

Philipp Gamper 2017-04-25 23


