

Seminar in Distributed Computing

Distributed Oblivious RAM for Secure

Two-Party Computation

Steve Lu & Rafail Ostrovsky

Philipp Gamper

Yao's millionaires problem

► Two millionaires¹ wish to know who is richer

Yao's millionaires problem

- ► Two millionaires¹ wish to know who is richer
- They do not want share any information about each others wealth

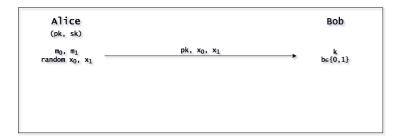
Yao's millionaires problem

- ► Two millionaires¹ wish to know who is richer
- They do not want share any information about each others wealth
- How can they carry out such a conversation?

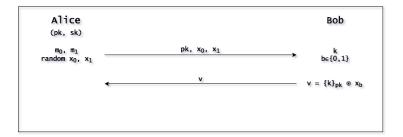
- Alice has two messages m_0 and m_1 , Bob has a bit b
- ▶ Bob wishes to receive *m*_b, without Alice learning *b*
- Alice wants Bob receiving only either of the two messages

- Alice has two messages m_0 and m_1 , Bob has a bit b
- ▶ Bob wishes to receive *m*_b, without Alice learning *b*
- Alice wants Bob receiving only either of the two messages

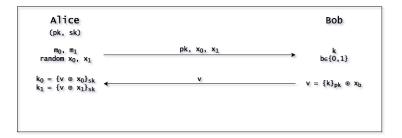
- Alice has two messages m_0 and m_1 , Bob has a bit b
- ▶ Bob wishes to receive *m_b*, without Alice learning *b*
- Alice wants Bob receiving only either of the two messages



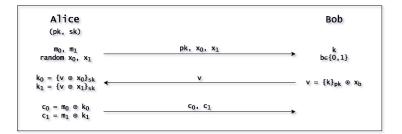
- Alice has two messages m_0 and m_1 , Bob has a bit b
- ▶ Bob wishes to receive *m*_b, without Alice learning *b*
- Alice wants Bob receiving only either of the two messages



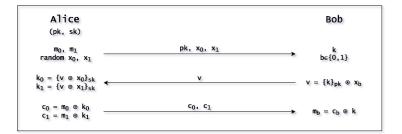
- Alice has two messages m_0 and m_1 , Bob has a bit b
- ▶ Bob wishes to receive *m*_b, without Alice learning *b*
- Alice wants Bob receiving only either of the two messages



- ▶ Alice has two messages *m*₀ and *m*₁, Bob has a bit *b*
- ▶ Bob wishes to receive *m*_b, without Alice learning *b*
- Alice wants Bob receiving only either of the two messages

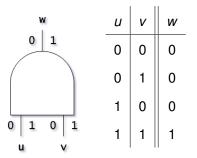


- Alice has two messages m_0 and m_1 , Bob has a bit b
- ▶ Bob wishes to receive *m*_b, without Alice learning *b*
- Alice wants Bob receiving only either of the two messages

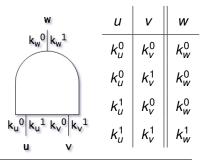


Boolean circuits

AND-gate and its corresponding truth table



garble input / output wires by assigning keys / labels to them



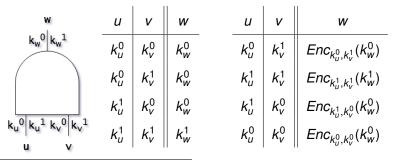
$$^{2}Enc_{a,b}(x) = Enc_{a}(Enc_{b}(x))$$

- garble input / output wires by assigning keys / labels to them
- encrypt² output wire using the keys of the input wires

w kw ⁰ ku ¹		v					w
$k_w^0 k_w^1$	k_u^0	$ \begin{array}{c} k_{v}^{0} \\ k_{v}^{1} \\ k_{v}^{0} \\ k_{v}^{0} \\ k_{v}^{1} \end{array} $	k_w^0	-	<i>k</i> ⁰ _{<i>u</i>}	k_v^0	$ \begin{split} & Enc_{k_{u}^{0},k_{v}^{0}}(k_{w}^{0}) \\ & Enc_{k_{u}^{0},k_{v}^{1}}(k_{w}^{0}) \\ & Enc_{k_{u}^{1},k_{v}^{0}}(k_{w}^{0}) \end{split} $
	k_u^0	k_v^1	k_w^0		k_u^0	k_v^1	$Enc_{k_u^0,k_v^1}(k_w^0)$
	k_u^1	k_v^0	k_w^0		k_u^1	k_v^0	$\textit{Enc}_{k_u^1,k_v^0}(k_w^0)$
k _u º k _u ⊥k _v º k _v ⊥ u v	<i>k</i> _u ¹	k_v^1	k_w^1		<i>k</i> ¹ _{<i>u</i>}	k_v^1	$Enc_{k_u^1,k_v^1}(k_w^1)$

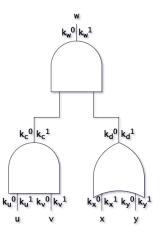
$$^{2}Enc_{a,b}(x) = Enc_{a}(Enc_{b}(x))$$

- garble input / output wires by assigning keys / labels to them
- encrypt² output wire using the keys of the input wires
- randomly permute the resulting truth table

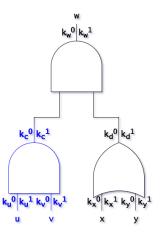


$$^{2}Enc_{a,b}(x) = Enc_{a}(Enc_{b}(x))$$

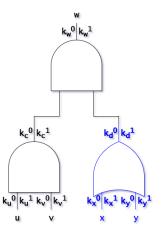
С	d	W
$Enc_{k^0_u,k^0_v}(k^0_c)$	$Enc_{k_x^0,k_y^0}(k_d^0)$	$Enc_{k_c^0,k_d^0}(k_w^0)$
$Enc_{k_u^0,k_v^1}(k_c^0)$	$Enc_{k_{x}^{0},k_{y}^{1}}(k_{d}^{0})$	$Enc_{k_c^0,k_d^1}(k_w^0)$
$Enc_{k_u^1,k_v^0}(k_c^0)$	$Enc_{k_{x}^{1},k_{y}^{0}}(k_{d}^{0})$	$Enc_{k_c^1,k_d^0}(k_w^0)$
$\textit{Enc}_{k_u^1,k_v^1}(k_c^1)$	$Enc_{k_x^1,k_y^1}(k_d^1)$	$Enc_{k_c^1,k_d^1}(k_w^1)$



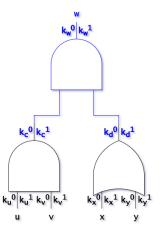
С	d	w
$Enc_{k_u^0,k_v^0}(k_c^0)$	$Enc_{k_x^0,k_y^0}(k_d^0)$	$Enc_{k_{c}^{0},k_{d}^{0}}(k_{w}^{0})$
$Enc_{k_u^0,k_v^1}(k_c^0)$	$Enc_{k_x^0,k_y^1}(k_d^0)$	$Enc_{k_c^0,k_d^1}(k_w^0)$
$Enc_{k_u^1,k_v^0}(k_c^0)$	$Enc_{k_x^1,k_y^0}(k_d^0)$	$Enc_{k_c^1,k_d^0}(k_w^0)$
$Enc_{k_u^1,k_v^1}(k_c^1)$	$Enc_{k_x^1,k_y^1}(k_d^1)$	$Enc_{k_c^1,k_d^1}(k_w^1)$



С	d	w
$Enc_{k^0_u,k^0_v}(k^0_c)$	$Enc_{k_x^0,k_y^0}(k_d^0)$	$Enc_{k_c^0,k_d^0}(k_w^0)$
$Enc_{k_u^0,k_v^1}(k_c^0)$	$Enc_{k_x^0,k_y^1}(k_d^0)$	$Enc_{k_c^0,k_d^1}(k_w^0)$
$Enc_{k_u^1,k_v^0}(k_c^0)$	$Enc_{k_x^1,k_y^0}(k_d^0)$	$Enc_{k_c^1,k_d^0}(k_w^0)$
$Enc_{k_u^1,k_v^1}(k_c^1)$	$Enc_{k_x^1,k_y^1}(k_d^1)$	$Enc_{k_c^1,k_d^1}(k_w^1)$



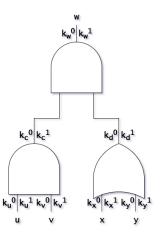
С	d	w
$Enc_{k^0_u,k^0_v}(k^0_c)$	$Enc_{k_x^0,k_y^0}(k_d^0)$	$Enc_{k_c^0,k_d^0}(k_w^0)$
$Enc_{k_u^0,k_v^1}(k_c^0)$	$Enc_{k_x^0,k_y^1}(k_d^0)$	$Enc_{k_c^0,k_d^1}(k_w^0)$
$Enc_{k_u^1,k_v^0}(k_c^0)$	$Enc_{k_x^1,k_y^0}(k_d^0)$	$Enc_{k_c^1,k_d^0}(k_w^0)$
$\textit{Enc}_{k_u^1,k_v^1}(k_c^1)$	$Enc_{k_x^1,k_y^1}(k_d^1)$	$Enc_{k_c^1,k_d^1}(k_w^1)$



 evaluate the circuit gate by gate to obtain the encrypted output

с	d	w
$\textit{Enc}_{k_u^0,k_v^0}(k_c^0)$	$\textit{Enc}_{k_x^0,k_y^0}(k_d^0)$	$Enc_{k_c^0,k_d^0}(k_w^0)$
$Enc_{k_u^0,k_v^1}(k_c^0)$	$Enc_{k_x^0,k_y^1}(k_d^0)$	$Enc_{k_c^0,k_d^1}(k_w^0)$
$Enc_{k_u^1,k_v^0}(k_c^0)$	$Enc_{k_{x}^{1},k_{y}^{0}}(k_{d}^{0})$	$Enc_{k_c^1,k_d^0}(k_w^0)$
$\textit{Enc}_{k_u^1,k_v^1}(k_c^1)$	$Enc_{k_x^1,k_y^1}(k_d^1)$	$Enc_{k_c^1,k_d^1}(k_w^1)$

• Output translation $[(0, k_w^0), (1, k_w^1)]$



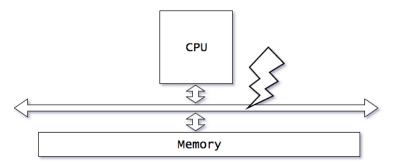
A solution to the millionaires problem

- 1. Alice generates a garbled full adder circuit that outputs the carry flag
- 2. Alice sends the circuit to Bob along with her encrypted input
- 3. Bob receives his encrypted inputs using oblivious transfer
- 4. Bob evaluates the circuit gate by gate to obtain his output
- 5. Alice and Bob communicate to learn the output

Oblivious RAM (ORAM)

Oblivious RAM (ORAM)

Def (informal): The sequence of memory access of an oblivious RAM reveals no information about the input, beyond the running time for the input

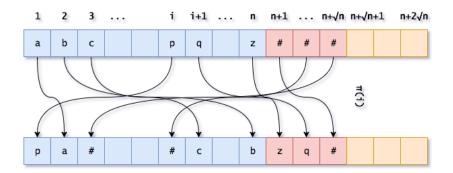


Trivial ORAM

- for every operation scan through entire memory
- obviously hides the access pattern
- ▶ BUT causes *O*(*n*) overhead

The "square root" solution

The "square root" solution - initialization



► randomly permute memory cells 1 to $n + \sqrt{n}$ using a PRF $\pi(i)$

DINFK

1	2	3		i	i+1	 n	n+1		n+√n	n+√n-	+1	n+2√n
р	a	#		#	с	b	z	q	#			

1. simulate \sqrt{n} memory accesses by reading cells $n + \sqrt{n} + 1$ to $n + 2\sqrt{n}$

DINFK

- 1. simulate \sqrt{n} memory accesses by reading cells $n + \sqrt{n} + 1$ to $n + 2\sqrt{n}$
- 2. if *v*-th cell was found, access next dummy cell $\pi(n + i)$ else retrieve it from $\pi(v)$

- 1. simulate \sqrt{n} memory accesses by reading cells $n + \sqrt{n} + 1$ to $n + 2\sqrt{n}$
- 2. if *v*-th cell was found, access next dummy cell $\pi(n + i)$ else retrieve it from $\pi(v)$
- 3. keep the value of the *v*-th cell in the $n + \sqrt{n} + i$ -th cell

1	2	3	1111	i	i+1	 n	n+1		n+√n	n+√n-	+1	n+2√n
р	a	#		#	с	b	z	q	#	с		

First access to cell v, retrieve from π(v) after simulating √n memory accesses

11

- First access to cell v, retrieve from π(v) after simulating √n memory accesses
- ▶ keep the value of the *v*-th cell in the $n + \sqrt{n} + i$ -th cell

1	2	3	•••	i	i+1	••••	n	n+1		n+√n	n+√n	+1	n+2√n
р	a	#		#	с		b	z	q	#	с	z	

1	2	3		i	i+1	 n	n+1	•••	n+√n	n+√n	+1	n+2√n
р	a	#		#	с	b	z	q	#	с	z	

► the *v*-th cell has been read before, access dummy cell $\pi(n + i)$

1	2	3		i	i+1	 n	n+1		n+√n	n+√n	+1	n+2√n	
р	a	#		#	с	b	z	q	#	с	z	#	

- ► the *v*-th cell has been read before, access dummy cell $\pi(n + i)$
- after \sqrt{n} queries the cache is full

The "square root" solution - *i*-th step (i = 3, v = 3)

1	2	3								n n+√n+1			
р	a	#		#	с	b	z	q	#	с	z	#	

- ▶ the *v*-th cell has been read before, access dummy cell $\pi(n + i)$
- after \sqrt{n} queries the cache is full
- reshuffling called *oblivious sorting* required

Oblivious sorting

Def (informal): A sorting algorithm is called oblivious iff the sequence of compare operations is independent of the input.

The general, very informal idea of oblivious sorting is as follows

- assign random tags to each memory cell
- sort the cells according to the tag

e.g., Bubble Sort is oblivious, while Quick Sort is not

The "square root" solution - Analysis

Overhead to perform n queries

- each query requires \sqrt{n} memory accesses
- ► there are \sqrt{n} queries per round, what requires $\sqrt{n} \times \sqrt{n} = n$ memory accesses
- \sqrt{n} -rounds $\times \sqrt{n}$ -queries results in $\sum_{i=1}^{\sqrt{n}} n = n\sqrt{n}$, thus $\mathcal{O}(n\sqrt{n})$
- ► oblivious sorting requires $\mathcal{O}(nlog(n))$, and $\mathcal{O}(\sqrt{nlog(n)n})$ in total
- the overall overhead is $\mathcal{O}(\sqrt{n}\log(n))$

The "square root" solution - Analysis

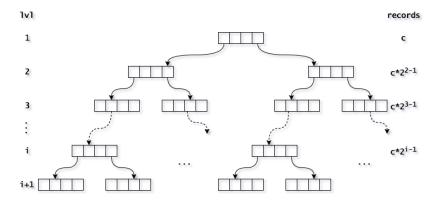
Overhead to perform n queries

- each query requires \sqrt{n} memory accesses
- ► there are \sqrt{n} queries per round, what requires $\sqrt{n} \times \sqrt{n} = n$ memory accesses
- \sqrt{n} -rounds $\times \sqrt{n}$ -queries results in $\sum_{i=1}^{\sqrt{n}} n = n\sqrt{n}$, thus $\mathcal{O}(n\sqrt{n})$
- ► oblivious sorting requires $\mathcal{O}(nlog(n))$, and $\mathcal{O}(\sqrt{nlog(n)n})$ in total
- the overall overhead is $\mathcal{O}(\sqrt{n}\log(n))$

Hence the ORAM simulation is dominated by the oblivious sorting

Secure two party computation using ORAM

ORAM using a hierarchical data structure

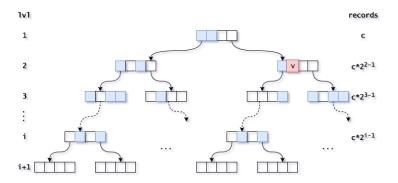


ORAM using a hierarchical data structure

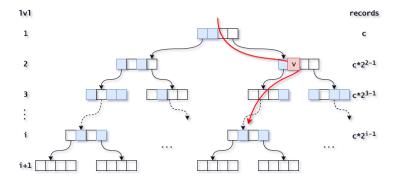
the idea remains the same as in the "square root" solution

- 1. fetch some records in order to obtain (v, x)
- 2. check whether x has been found or not
- 3. retrieve directly from $\pi(v)$ or do dummy access respectively
- 4. re-encrypt x and store back
- 5. reshuffle if "cache", i.e., the root bucket, becomes full

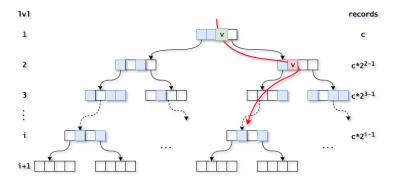
▶ first query to cell v



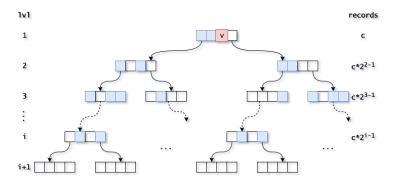
always traverse tree until reaching a leaf



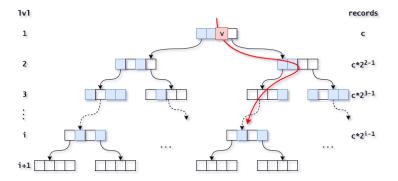
re-insert cell v in the next empty cell in the root bucket



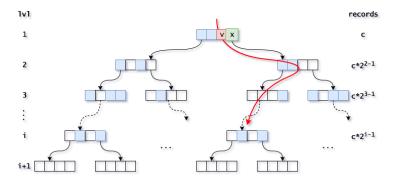
► further queries to cell *v*



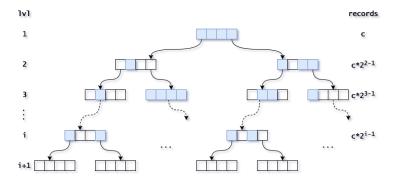
again fetch until reaching a leaf node



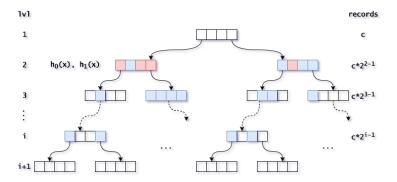
insert dummy cell, as v is already in the root bucket



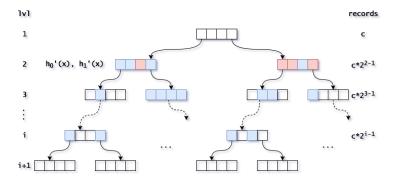
reshuffling required, if the root bucket becomes full



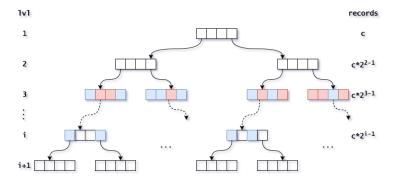
all cells of the root bucket are pushed down to the 2nd-level



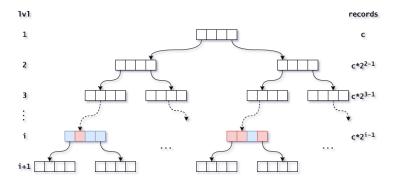
▶ while reshuffling level *j*, two new hash functions are chosen



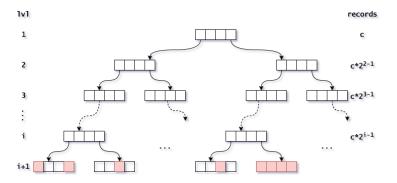
▶ if *j* + 1-th level becomes full, it is reshuffled as well



▶ if the 2nd to *i*-th level are half full, level *i* eventually becomes full



▶ hence, the *i* + 1-th level ends up half full



Key ingredients

- levels are alternating distributed on the two server
- avoid oblivious sorting
- ► use "tagging", that is PRF(i, e_i, v), where e is the epoch, i the level and v the index of the record
- Cuckoo hashing with a stash to cause the buckets overflowing with negligible probability

Analysis

- ► O(log(n)) computational overhead, if using a buckets of size 3 * log(n)/log(log(n))
- ▶ O(1) client storage
- two servers using $\mathcal{O}(n)$ storage each
- negligible probability of an attacker is able to distinguish between two query sequences

Secure two party computation

Two parties wish to compute some function f(x, y) on their inputs x and y

Secure two party computation

Two parties wish to compute some function f(x, y) on their inputs x and y

- let both parties play the role of one server each
- the client is shared between the two parties using secret sharing
- only build atomic opration on the ORAM in circuits
- ► simulate the underlying circuit of *f* using ORAM
- communicate to learn the output

Conclusion

Conclusion

- ► we have seen a multi-server model for oblivious RAM using O(1) client and O(n) server storage resulting in a only O(log(n)) computational overhead
- a two-party secure RAM computation protocol, that is more efficient than existing construction

References

- Towards a theory of software protection and simulation by oblivious RAMs Oded Goldreich
- Protocols for secure computations Andrew Chi-Chih Yao
- Software protection and simulation on oblivious RAMs Oded Goldreich, Rafail Ostrovsky
- Efficient computation on oblivious rams Rafail Ostrovsky
- Private information storage Rafail Ostrovsky, VictorShoup
- More robust hashing: Cuckoo hashing with a stash Adam Kirsch, Michael Mitzenmacher, and Udi Wieder