ETH zürich

Frontiers in Communication

Reto Achermann

Distributed Systems Seminar

ETH zürich

Primer on signal transmission: Signal Strength

Blocked and reflected by surfaces and walls

EHzürich

Reto Achermann, Seminar in Distributed Computing

ETH zürich

Shannon-Hartley Theorem

- C: Channel Capacity (kBit/s)
- B: Bandwidth of the channel (Hz)
- S: Signal Power (avg)
- N: Noise interference (avg)

$$C = B \cdot \log_2(1 + \frac{S}{N})$$

Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions

Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and Joshua R. Smith. NSDI 2016.

Wi-Fi transmitter consumes 500 - 700 mW

- IoT: Many small sensors with limited battery
- Wi-Fi transmitters consume a lot of energy:
 - Microphone: **Power scaled** No such scaling Audio: 50 uW with Moore's law O(100 mW)**O(10 µW)** Wi-Fi Chipset: 670 mW \rightarrow 65 uW Camera: Visuals: 10mW Analog Digital Wi-Fi Chipset: 680 mW → 14mW (RF) (Baseband) Get rid of power hungry analog RF

ETHzürich

Passive Wi-Fi Idea: Use of Back-Scatter and reflections

Partially borrowed from the NSDI talk Reto Achermann, Seminar in Distributed Computing

Approach: Back Scatter

22Mhz main lobe of WiFi

Too much interference

Backscatter Approach: Shift by Δf using square wave approximation

EHzürich

Results: Move Passive device between

ETH zürich

Results: Move passive device away

Results: Move passive device away

Ripple II: Faster Communication through Physical Vibration

Nirupam Roy and Romit Roy Choudhury. NSDI 2016.

Short range communication is central to many applications

- Use WiFi, Bluetooth, NFC
- Radio based communication operate at distance

Approach: Using vibratory ratio

Physical Wave Setup of Ripple I

Physical Wave Setup of Ripple II

EHzürich

Idea: Cover the sound hole

Average gain of 18.2dB

+ ambient sound cancelling (not trivial, e.g. phase mismatch)

EHzürich

Prototype

Reto Achermann, Seminar in Reisenibert Side Computing

Prototype

Results: Median Throughput

VoiP Bandwidth [1] 28.8 Kbps - 87.2 Kbps

[1] <u>http://www.cisco.com/c/en/us/support/docs/voice/voice-quality/7934-bwidth-consume.html</u> Reto Achermann, Seminar in Distributed Computing

Application: Table Top Communication

27

Application: Authentication Token

00

Throughput:

7.41 Kbit/s with ring2.23 Kbit/s with watch

ETH zürich

Video

Visible Light Communication, Networking and Sensing: A Survey, Potential and Challenges

Parth H. Pathak, Xiaotao Feng, Pengfei Hu, Prasant Mohapatra. IEEE Communications Surveys & Tutorials. 2015.

Waves generally travel in all directions

This is maybe not what we want

https://pixabay.com/en/wave-background-pattern-water-1443249/

Cell towers

If only we knew how to color a 2d mesh...

Use the visible light

Sending device: White LED

Reto Achermann, Seminar in Distributed Computing

BLUE LED

Light Communication: Contained within a Room

Reto Achermann, Seminar in Distributed & bad: Light is blocked by walls, objects

Receiving device: White LED

Photodetector

RGB Inside the Camera

Challenges: Rolling Shutter

Challenges

- Non flickering: >200 Hz to avoid any harmful effects
- Interference: sunlight / other LEDs
- Angle of arrival
- Reflection

Car to Car communication

Location Service

- Works indoor
- 40cm accuracy
- Wi-Fi based: 3-6m

ETH zürich

Configurable Data Center Interconnects using Lasers

ProjecToR: Agile Reconfigurable Data Center Interconnect

- Static capacity between ToR pairs
- Problem: Skew traffic
 Over-provisioned for most pairs
 Under-provisioned for a few others
- Idea:

Use free-space optics for seamless reconfiguration of the interconnect

Monia Ghobadi etal. SIGCOMM '16 Reto Achermann, Seminar in Distributed Computing

ProjecToR: Agile Reconfigurable Data Center Interconnect

Monia Ghobadi etal. SIGCOMM '16 Reto Achermann, Seminar in Distributed Computing

EHzürich

ProjecToR: Results

Flow completion times improved by 30-95%

Cost reduction by 25-40%

Summary

