Energy Efficient GPS Silvan Egli

Motivation

GPS - Localization

$$\left\|\frac{\boldsymbol{s_1} - \boldsymbol{p}}{c}\right\| = t - t_1$$
$$\left\|\frac{\boldsymbol{s_2} - \boldsymbol{p}}{c}\right\| = t + t_{12} - t_2$$
$$\left\|\frac{\boldsymbol{s_3} - \boldsymbol{p}}{c}\right\| = t + t_{13} - t_3$$
$$\vdots$$
$$\left\|\frac{\boldsymbol{s_n} - \boldsymbol{p}}{c}\right\| = t + t_{1n} - t_n$$

Find least squares solution in p and t

GPS - Frames

Problems - Signal Length

Source: http://www.gps.gov/technical/ps/1995-SPS-signal-specification.pdf

Problems - Satellite Acquisition

Which satellites are visible ?

50 bps

Problems - Acquisition

Code Phase Delay

Identical Code generated in

Doppler Shift

Problems - Summed Up

1. Low data rate -> 6 sec up to 30 sec

2. Big search space

What if ?

Coarse Time Navigation (CTN)

Basic idea

- Approximate Time
- Approximate Position
- Sub-ms Propagation Time

Cloud Offloaded (CO) - GPS

Energy Efficient GPS Sensing with Cloud Offloading

Jie Liu, Bodhi Priyantha, Ted Hart, Heitor S. Ramos and Antonio A.F. Loureiro. SenSys 2012.

Goal : "Achieve the best possible energy efficiency in GPS sensing"

CO - GPS

- Coarse Time Navigation with unknown location

Multiple feasible solutions under 1ms ambiguity due to missing reference

Solution for Shadow Locations

- Guess Landmark using Doppler Shift and Satellite's velocity

Localization

CO - GPS Flow Code Phase Geographical Location & Raw Signal Acquisition CTN + Constraints Time Doppler Shift Landmark Generation Ephemeris Elevation Timestamp Service Service Receiver

CO - GPS Evaluation

Goal : "Achieve the best possible energy efficiency in GPS sensing"

CO - GPS Evaluation

CO - GPS Evaluation

What about the time ?

CO - GPS Implementation

Goal : "Achieve the best possible energy efficiency in GPS sensing"

-> Can we quantify energy efficiency ?

CO - GPS Implementation

Can we quantify energy efficiency ?

- ~ 0.5 mJ per location fix vs. 1 J
- Continuous tracking for 1 Year with 2 AA batteries

COIN - GPS

Indoor Localization from Direct GPS Receiving

Shahriar Nirjon, Jie Liu, Gerald DeJean, Bodhi Priyantha, Yuzhe Jin and Ted Hart. MobiSys 2014.

Goal : "Extend GPS receiving to indoor environments [...]"

Indoor Problems

Motivations & Solutions

- Slowly moving objects
- Cloud Offloading (CO) GPS
- Single floor buildings
- Directed antenna

Results

System	Locations	Fixes
Garmin	2	None
COIN-GPS	2	2

Figure 18: Starbucks.

System	Locations	Fixes
Garmin	4	None
COIN-GPS	4	4

Figure 19: Home Depot.

Overview

CO - GPS Discussion

- + 10 ms of data
 - + Less energy for sensing
 - + Less Storage (40 kB / Location)
- + Duty Cycling
- + Offline Calculation

- Precision
- Offline Calculation
- Location on surface

Coin - GPS Discussion

+ Indoor GPS

- Antenna

+ No additional infrastructure

- High computational complexity
- Slow (60 90 sec)
- Single storied buildings

Thank you !

