Geo-Routing

Chapter 3

Eldgenddsische Technische Hochschule Zdrich

Swits Fedleral Ingtitute of Technology Zurich Ad Hoc and Sensor Networks — Roger Wattenhofer — 3/1

Rating

* Area maturity

First steps Text book

* Practical importance

No apps Mission critical

 Theoretical importance

Not really Must have

\
.‘|
’
\

Ad Hoc and Sensor Networks — Roger Wattenhofer — 3/2

Overview

« Classic routing overview
« Geo-routing
» Greedy geo-routing

« FEuclidean and planar graphs
 Face Routing

« Greedy and Face Routing

« 3D Geo-Routing

« Geometric Routing without Geometry

Classic Routing 1: Flooding

What is Routing?

,2Routing is the act of moving information across a network from a
source to a destination.” (CISCQO)

The simplest form of routing is “flooding”: a source s sends the
message to all its neighbors; when a node other than destination ¢
receives the message the first time it re-sends it to all its neighbors.

simple (sequence numbers)

a node might see the same message @
more than once. (How often?)

what if the network is huge but the
target ¢ sits just next to the source s?

We need a smarter routing algorithm

Classic Routing 2: Link-State Routing Protocols

« Link-state routing protocols are a preferred iBGP method (within an
autonomous system) in the Internet

« |dea: periodic notification of all nodes about the complete graph

« Routers then forward a message along (for example) the shortest
path in the graph
+ message follows shortest path

— every node needs to store whole graph,
even links that are not on any path

— every node needs to send and receive
messages that describe the whole
graph regularly

Classic Routing 3: Distance Vector Routing Protocols

« The predominant method for wired networks

« |dea: each node stores a routing table that has an entry to each
destination (destination, distance, neighbor)

« If a router notices a change in its neighborhood or receives an
update message from a neighbor, it updates its routing table
accordingly and sends an update to all its neighbors

+ message follows shortest path
+ only send updates when topology changes @

— most topology changes
are irrelevant for a given Dest | Dir | Dst
source/destination pair

— every node needs to
store a big table

— count-to-infinity problem

~lolo]lo
oclolo]lo
O Y Ny N

Discussion of Classic Routing Protocols

« Proactive Routing Protocols * Reactive Routing Protocols

« Both link-state and distance vector + Flooding is “reactive,” but does
are “proactive,” that is, routes are not scale
established and updated even if

they are never needed. + If mobility is high and data

transmission rare, reactive

« If there is almost no mobility, algorithms are superior; in the
proactive algorithms are superior extreme case of almost no data
because they never have to and very much mobility the simple
exchange information and find flooding protocol might be a good
optimal routes easily. choice.

There is no “optimal” routing protocol; the choice of the routing protocol depends
on the circumstances. Of particular importance is the mobility/data vr‘atio.

B =

Routing in Ad-Hoc Networks

Reliability
— Nodes in an ad-hoc network are not 100% reliable
— Algorithms need to find alternate routes when nodes are failing

* Mobile Ad-Hoc Network (MANET)
— It is often assumed that the nodes are mobile (“Moteran”)

« 10 Tricks = 219 routing algorithms
* In reality there are almost that many proposals!

 Q: How good are these routing algorithms?!? Any hard results?
* A: Almost none! Method-of-choice is simulation...
» “If you simulate three times, you get three different results”

Geometric (geographic, directional, position-based) routing

« ...even with all the tricks there will be flooding every now and then.

* In this chapter we will assume that the nodes are location aware
(they have GPS, Galileo, or an ad-hoc way to figure out their
coordinates), and that we know where the destination is.

« Then we
simply route
towards the
destination

Geometric routing

Problem: What if there is no path in the right direction?

We need a guaranteed way to reach a destination even in the case
when there is no directional path...

Hack: as in flooding
nodes keep track

of the messages
they have already
seen, and then they
backtrack™ from there

*backtracking? Does this
mean that we need a stack?!?

Geo-Routing: Strictly Local

o

s

JISBOY
Austr ‘\‘.’\)\

\
HE41 Allmendstr

= |
Ziirich-Brunau \
%, h\

QQIBIY

ayaysIini

1SUBSIHNY

Wl Sensor Networks — Roger Wattenhofer — 3/11

Greedy Geo-Routing?

R] S vy}’,: '49,.6"" -~,__>\\>7: ‘§ Ny | ar, o
N ~ e wu \ . .
lo,) B) - Hh\g 1 S8 hS. Alice
(e Sy / X
‘ 5 & § \ 2
D g g X \ %,
\ G N A A
:eel)\\:hnm] Badeffels,, QS
. Qs >
% %,)
Aot
.
b&‘e‘ = &
f & !
a\x- & Ddder

&)
6.

&

L) .\
7 _-lllluhv\.ﬁfledlhl]ll/

N ‘/‘ =
&
&
$

'S

S
%
\/

s
<

sBWY
Austr, "\9\;\

Brandsohenke%
) \
8 o
A" |7\
AN
R

2 ™
? /E4 1, Manessesti % !
b ; = \
A \ g oK
e oe\B 8
) l“b Sdg\hauss s =¥ a0®
\ B } %
N A3 g § Riets ;‘_‘.’.‘.‘1{‘ .Alfle('-ESChé‘l-th <
L4 a9 ° ‘ - A W
| e I~
\ o,
Bob , s F
Bes{wark; 2 (o
] 2. 3
] | ® -
AN || Enge [l 55
\ I X [Q’b
L\ » D,
Q (ZN
E41 Allmendstif =2 || < i A
3 ‘\\ el E % 3. Mythen-Qua Y i
Ziirich-Brunau Y \ % %% [o
% Wit
(> \ 3 2

Ad Hoc and Sensor Networks

— Roger Wattenhofer

Greedy Geo-Routing?

11 aswdii : 4\ o &
}7) R S g Av o '2
oy “'a,,o, N | v > B
[450, Pl L '\ »fa
| Bt AR %
= £ >
\ G IS 5 3 a
\)
PP AN i :
N ene,s,r -
’ Q- = 2
3 } 2 0,,%
z
le,.s/
S
£ -] o
i o o\ i
‘$- 8 N 55\(. o e
4 & [3 f&
2| b \
&S) Oltingerstr, T,
2 %y
7 e"\a‘s 1/%, ;
5 <& % o
y 2 . S
3 % 2, oA
w [A -
ol & > W7
By Sk U
£ AN
o S -
§ SEEDN|E S
@ hor Z N q
/E4 1, IManessesti o = - | Brboretym % \ |
P : m < @3 <. i3 8 \\ <
S 2 Wy ‘ A\
i O
& r IS \
o & ‘
\eﬁbo Schu\hauSS“ : i 6"‘9 \
‘) 3 :‘ \ e
N A3 ‘g E Rietfnait] ..‘l.lflﬂl’-ESC‘hE"l-Stl SuIawe!
L |5 D | \ L
o ‘ IMythen-Qua ° Tl 4’6; \
\ f/ s \
Bob N % 6% \\
Dy L .
‘ S ®
\ E Enge s o Car0| A
.‘.\ P35S %
e N |
HE41 Allmendstf = || < S’ \\I - S
\ NN eilE° e X iitphhod X
Ziirich-Brunau \\ "% %% | L
(> \ 3 2

Ad Hoc and Sensor Networks

— Roger Wattenhofer

What is Geographic Routing?

A.k.a. geometric, location-based, position-based, etc.

« Each node knows its own position and position of neighbors
« Source knows the position of the destination
* No routing tables stored in nodes!

« Geographic routing makes sense
— Own position: GPS/Galileo, local positioning algorithms
— Destination: Geocasting, location services, source routing++
— Learn about ad-hoc routing in general

Greedy routing

Greedy routing
looks promising.

Maybe there is a
way to choose the
next neighbor
and a particular
graph where we
always reach the
destination?

Examples why greedy algorithms fail

« We greedily route to the neighbor
which is closest to the destination:
But both neighbors of x are
not closer to destination D

« Also the best angle approach W,
might fail, even in a triangulation:
if, in the example on the right, t
you always follow the edge with
the narrowest angle to destination
t, you will forward on a loop
Vg, Wo, Vq, Wy, ..., Vg, W3, Vo, ... v,

Euclidean and Planar Graphs

« Euclidean: Points in the plane, with coordinates
« Planar: can be drawn without “edge crossings” in a plane

8,
e
& ae a0
Lo}
a 8
° o % e
[:3 (<] N e
& e & o
° I
() e -t
® @ ° & /\ ™
@ e @ ° | & / %
@ / ® i
Q @ e @ [} o \
(-] o e] { o
il 4 A -8
o 9 \ °
a @ e 2, Ny \
i @ @ b \ \
\ o 4
b [\
RS ° P \
] a A \
° e j "8 \
o @ & e 00, y
@ i T =i 4 8
© ® N \ 3 .‘,,
@ a |
fo} (o} |
o e
=}) 4 . - s : v
/ / o f
o o 3 ; e CS o . N
@ a8 ;.
ol -
e @ o3 o

« Euclidean planar graphs (planar embeddings) simplify geometric
routing.

Unit disk graph

« We are given a set V of nodes in the plane (points with coordinates).

« The unit disk graph UDG(V) is defined as an undirected graph (with
E being a set of undirected edges). There is an edge between two
nodes u,v iff the Euclidean distance between u and v is at most 1.

« Think of the unit distance as the maximum transmission range.

* We assume that the unit disk graph
UDG is connected (that is, there is a
path between each pair of nodes)

* The unit disk graph has many edges.

« Can we drop some edges in the UDG WS R
to reduce complexity? A \

Planar graphs

« Definition: A planar graph is a graph
that can be drawn in the plane such
that its edges only intersect at their
common end-vertices.

« Kuratowski’s Theorem: A graph is planar iff it contains no subgraph
that is edge contractible to K or K .

« Euler’s Polyhedron Formula: A connected
planar graph with n nodes, m edges, and f
faceshasn—-—m+f=2.

« Right: Example with 9 vertices,14 edges,
and 7 faces (the yellow “outside” face is
called the infinite face)

 Theorem: A simple planar graph with
n nodes has at most 3n—6 edges, for n>3.

Gabriel Graph

« Let disk(u,v) be a disk with diameter (u,v)
that is determined by the two points u,v.

« The Gabriel Graph GG(V) is defined
as an undirected graph (with E being
a set of undirected edges). There is an
edge between two nodes u,v iff the
disk(u,v) including boundary contains no
other points.

» As we will see the Gabriel Graph
has interesting properties.

Delaunay Triangulation

« Letdisk(u,v,w) be a disk defined by
the three points u,v,w. \
« The Delaunay Triangulation (Graph) i
DT(V) is defined as an undirected) 4 W

graph (with E being a set of undirected
edges). There is a triangle of edges
between three nodes u,v,w iff the
disk(u,v,w) contains no other points.

« The Delaunay Triangulation is the
dual of the Voronoi diagram, and
widely used in various CS areas;
the DT is planar; the distance of a
path (s,...,t) on the DT is within a
constant factor of the s-t distance.

Other planar graphs

« Relative Neighborhood Graph RNG(V)

 Anedge e = (u,v) is in the RNG(V) iff
there is no node w with (u,w) < (u,v)
and (v,w) < (u,v).

* Minimum Spanning Tree MST(V)

* A subset of E of G of minimum weight
which forms a tree on V.

Properties of planar graphs

Theorem 1:
MST(V) cRNG(V) c GG(V) = DT(V)

Corollary:
Since the MST(V) is connected and the DT(V) is planar, all the
planar graphs in Theorem 1 are connected and planar.

Theorem 2:
The Gabriel Graph contains the Minimum Energy Path
(for any path loss exponent o > 2)

Corollary:
GG(V) N UDG(V) contains the Minimum Energy Path in UDG(V)

Routing on Delaunay Triangulation?

Let d be the Euclidean
distance of source s and
destination t

Let ¢ be the sum of the
distances of the links of
the shortest path in the
Delaunay Triangulation

It was shown that ¢ = ©(d)

Three problems:

) How do we find this best route in the DT? With flooding?!?

How do we find the DT at all in a distributed fashion?

) Worse: The DT contains edges that are not in the UDG, that is,

nodes that cannot receive each other are “neighbors” in the DT

Breakthrough idea: route on faces

[

N

Remember the
faces...

|dea:

Route along the
boundaries of

the faces that

lie on the
source—destination
line

b ,

. .

Face Routing

0. Letf be the face
incident to the source
s, intersected by (s,t)

1. Explore the boundary
of f; remember the
point p where the
boundary
intersects with (s,t)

after traversing

the whole

boundary, go back
to p, switch the face,
and repeat 1 until you
hit destination t.

Face Routing Works on Any Graph

Face Routing Properties

« All necessary information is stored in the message
— Source and destination positions
— Point of transition to next face

« Completely local:
— Knowledge about direct neighbors® positions sufficient
— Faces are implicit

—
2)‘_/ ,
‘ “Right Hand Rule”

« Planarity of graph is computed locally (not an assumption)
— Computation for instance with Gabriel Graph

Face routing is correct

Theorem: Face routing terminates on any simple planar graph in
O(n) steps, where n is the number of nodes in the network

Proof: A simple planar graph has at most 3n—6 edges. You leave
each face at the point that is closest to the destination, that is, you
never visit a face twice, because you can order the faces that
intersect the source—destination line on the exit point. Each edge is
in at most 2 faces. Therefore each edge is visited at most 4 times.
The algorithm terminates in O(n) steps.

|s there something better than Face Routing?

« How to improve face routing? A proposal called “Face Routing 2”

» |dea: Don’t search a whole face for the best exit point, but take the
first (better) exit point you find. Then you don’t have to traverse huge
faces that point away from the destination.

« Efficiency: Seems to be practically more efficient than face routing.
But the theoretical worst case is worse — O(n?).

« Problem: if source and destination are very close, we don’'t want to
route through all nodes of the network. Instead we want a routing
algorithm where the cost is a function of the cost of the best route in
the unit disk graph (and independent of the number of nodes).

Face Routing

« Theorem: Face Routing reaches destination in O(n)
steps
« But: Can be very bad compared to the optimal route

Bounding Searchable Area

Adaptive Face Routing (AFR)

* |dea: Use
face routing
together with
ad hoc routing
trick 11!

« Thatis, don’t
route beyond
some radius
r by branching
the planar graph
within an ellipse
of exponentially
growing size.

AFR Example Continued

AFR Pseudo-Code

0. Calculate G = GG(V) N UDG(V)
Set ¢ to be twice the Euclidean source—destination distance.

1. Nodes w € W are nodes where the path s-w-t is larger than c. Do
face routing on the graph G, but without visiting nodes in W. (This is
like pruning the graph G with an ellipse.) You either reach the
destination, or you are stuck at a face (that is, you do not find a
better exit point.)

2. If step 1 did not succeed, double ¢ and go back to step 1.

* Note: All the steps can be done completely locally,
and the nodes need no local storage.

The (1) Model

« We simplify the model by assuming that nodes are sufficiently far
apart; that is, there is a constant d, such that all pairs of nodes have
at least distance d,. We call this the (1) model.

« This simplification is natural because nodes with transmission range
1 (the unit disk graph) will usually not “sit right on top of each other”.

 Lemma: In the (1) model, all natural cost models (such as the
Euclidean distance, the energy metric, the link distance, or hybrids
of these) are equal up to a constant factor.

 Remark: The properties we use from the 2(1) model can also be
established with a backbone graph construction.

Analysis of AFR in the 2(1) model

« Lemma 1: In an ellipse of size ¢ there are at most O(c?) nodes.

« Lemma 2: In an ellipse of size c, face routing terminates in O(c?)
steps, either by finding the destination, or by not finding a new face.

« Lemma 3: Let the optimal source—destination route in the UDG
have cost c*. Then this route c* must be in any ellipse of size c* or
larger.

« Theorem: AFR terminates with cost O(c*?).

* Proof: Summing up all the costs until we have the right ellipse size
is bounded by the size of the cost of the right ellipse size.

Lower Bound

* The network on the right
constructs a lower bound.

 The destination is the
center of the circle,
the source any node
on the ring.

« Finding the right chain
costs Q(c*2?),
even for randomized
algorithms

 Theorem:
AFR is asymptotically optimal.

Non-geometric routing algorithms

In the (1) model, a standard flooding algorithm enhanced with trick
1 will (for the same reasons) also cost O(c*?).

However, such a flooding algorithm needs O(1) extra storage at
each node (a node needs to know whether it has already forwarded

a message).

Therefore, there is a trade-off between O(1) storage at each node or
that nodes are location aware, and also location aware about the

destination. This is intriguing.

GOAFR — Greedy Other Adaptive Face Routing

« Back to geometric routing...
« AFR Algorithm is not very efficient (especially in dense graphs)

« Combine Greedy and (Other Adaptive) Face Routing
— Route greedily as long as possible

— Circumvent “dead ends” by use of face routing Other AFR: In each

— Then route greedily again face proceed to node
closest to destination

GOAFR+

Early Fallback to Greedy Routing?

« We could fall back to greedy routing as soon as we are closer to t
than the local minimum
« But:

. > . >y

Q(c*Q)vnodes Q(c*) local minima

+ “Maze” with Q(c*2) edges is traversed Q(c*) times — Q(c*3) steps

GOAFR — Greedy Other Adaptive Face Routing

« Early fallback to greedy routing:
— Use counters p and qg. Let u be the node where the exploration of the

current face F started
« p counts the nodes closer to t than u
« @ counts the nodes not closer to t than u
— Fall back to greedy routing as soon as p > ¢ - q (constant ¢ > 0)

Theorem: GOAFR is still asymptotically worst-case optimal...
...and it is efficient in practice, in the average-case.

 What does “practice” mean?
— Usually nodes placed uniformly at random

Average Case

* Not interesting when graph not dense enough
* Not interesting when graph is too dense

« Critical density range (“percolation”)
— Shortest path is significantly longer than Euclidean distance

I8 v zasaV vqﬂnyy», <7
\ ""%glié 02%““',‘!" ““ ":r.w
' &!%‘.‘4"'4‘ uv%,4 S """ P\\\

AVA
‘

}

4
> Qe "c 1. "'w'w e
& SIPEA IS, R V‘
W 'g‘gg!i“g;w‘?‘h A "'v,g‘m 4!
‘ \15 D .k 7 «IP P8
s “. S P

Save: ey
NN
N\ ..

‘VA'" 4‘ ‘llzn; «v‘%w "i,’ AL\

v

AV=riraN Oty >il "A\w A
&K/ TR Q

’7‘% 'A""i,o' '}‘ '\‘l “.‘>:"“ 4“7‘4»\«;
“k Av»"?‘;.‘ A,.’ ’,"ﬁy‘&b "ﬁ'\‘.‘t"’@é
¥\« ‘ ‘Pv 4Av '““'AV “‘Q‘ ":A' 2
b £ s ‘aﬂ\;"t .2?'%"“:. /
< “K v)v b i K >' 2
SRR S

(> VA A
. Szt i
\ S ““ d %

N AN . W ﬁ — VV 4»«) NN

too sparse critical density too dense

Critical Density: Shortest Path vs. Euclidean Distance

» Shortest path is significantly longer than Euclidean distance

* Critical density range mandatory for the simulation of any routin

-

algorithm (not only geographic)

Randomly Generated Graphs: Critical Density Range

Shortest Path Span

T 1 1 1 1 1 1 1 1 L]
© 0 0 0 o0 0 0 o©0 o o =
- N WO b OO0 O N 0O O
Frequency

0 5 10 15
Network Density [nodes per unit disk]

Simulation on Randomly Generated Graphs

107 ey -1
g 9 - - 0.9
o I
S 81 0.8
- 0.7
o] -
- - 0.6 B
© 6] qC>
S - 0.5 o
(@) i O
e O o
) - 0.4
o 4 -
- 0.3
o 3 - 0.2
8 2 B - 0.1
| —=——=—— critical - - . =0
0 2 4 6 8 10 12

Network Density [nodes per unit disk]

A Word on Performance

« What does a performance of 3.3 in the critical density range mean?

« If an optimal path (found by Dijkstra) has cost c,
then GOAFR+ finds the destination in 3.3.c steps.

« It does not mean that the path found is 3.3 times as long as the
optimal path! The path found can be much smaller...

 Remarks about cost metrics
— In this lecture “cost” ¢ = ¢ hops
— There are other results, for instance on distance/energy/hybrid metrics

— In particular: With energy metric there is no competitive geometric
routing algorithm

Energy Metric Lower Bound

Example graph: k “stalks”, of which only one leads to t

— any deterministic (randomized)
geometric routing algorithm A has (A
to visit all k (at least k/2) “stalks” liMm c

> 2
— optimal path has constant cost ¢’ K— o0 C

(covering a constant distance at
almost no cost) p ’

.o e oo o e. e ese..

1<D<2 oV .

d
{
R U G A G Y

— With energy metric there is no competitive geometric routing algorithm

GOAFR: Summary

Face
Routing
Adaptive
Face Routing
Greedy 4
Routing
GOAFR?*
Average-case efficiency Worst-case optimality

“Practice” “Theory”

3D Geo-Routing

« The world is not flat. We can certainly envision networks in 3D, e.g.
in a large office building. Can we geo-route in three dimensions?
Are the same techniques possible?

« Certainly, if the node density is high enough (and the node
distribution is kind to us), we can simply use greedy routing. But
what about those local minima?!?

» 'f""'.'{’x, : :
ey
* Is there something like a face in 3D? ST -y
« How would you do 3D routing? AR R LACH S
i’""\ r.p" 2 :‘-.’F:-',.:,'..;...' b

.1 < ‘ ’..:
* The picture on the right is the 3D R O
equivalent of the 2D lower bound,

proving that we need at least OPT3 steps.

Deterministic Routing in 3-Dimensional Networks

We will prove that
There is no deterministic k-local routing algorithm for 3D UDGs

» Deterministic: Whenever a node n receives a message from node m, n
determines the next hop as a function f(n,m,s,t,N(n)), where s and t are the
source and the target nodes and N(n) the neighborhood of n.

* k-local: A node only knows its k-hop neighborhood

* Proof Outline:
(A) We show that an arbitrary graph G can be translated to a 3D UDG G’
B) Assume for contradiction that there is a k-local algorithm A, for 3D UDGs,
C)We show that there must also be a 1-local algorithm A, for 3D UDGs
)

D) The translation from G to G’ is strictly local, therefore, we could simulate A,
on G and obtain a 1-local routing for arbitrary graphs

(E) We show that there is no such algorithm, disproving the existence of A,.

A~ A~

Transforming a general graph to a 3D UDG (1/2)

Main idea: Build the 3D UDG similar to an electronic circuit on three
layers, and add chains of virtual nodes (the conductors)

-

Transforming a general graph to a 3D UDG (2/2)

* Virtual nodes on the middle layer establish the connections
* The resulting graph is a 3D UDG

1-local Routing for 3D UDGs

« Assume that there is a k-local routing algorithm A, for 3D UDG

« Adapt the transformation s.t. the connecting lines contain at least 2k
virtual nodes

« As aresult, A, cannot see more than 1 hop of the original graph

* The stretching of the paths introduces ‘dummy’ information of no
use, but the algorithm A, still has to work

» Therefore, there must also be a 1-local algorithm A, for 3D UDG

1-local Routing for Arbitrary Graphs

The transformation to the 3D UDG G’ can be determined strictly
locally from any graph G

The nodes of any graph G can simulate A, by simulating G’

Therefore, A, can be used to build a 1-local routing algorithm for
arbitrary graphs

1-local Routing for Arbitrary Graphs is impossible (1/2)

« A deterministic routing algorithm can be described as a function
f(n,m,s,t,N(n)), which returns the next hop

* n:current node, m: previous node, s: source, t. target,
N(n): neighborhood of n

* Node n has no means to determine /ocally which of its neighbors
has a connection to t — n must try all of them before returning to m

» Even the position of f or s can’t help
« The function f must be a cycle over the i+7 neighbors
* If not, we miss some neighbors of n, which may connect to ¢

N = 3o
—_—

=i

1-local Routing for Arbitrary Graphs is impossible (2/2)

 Node 2 and 7 have to decide on one forwarding function

« There are 4 combinations possible. For all of them, forwarding fails
either in the left or the right network

« Conclusion 1: 1-local routing algorithms do not exist
« Conclusion 2: There is no k-local routing algorithm for 3D UDG
« Conclusion 3: There is no k-local routing algorithm for 3D graphs

X | f5(x) X | f5(x) X | f7(x) X | f7(x)
113 114 518 516
314 Xor 413 8|6 XO0r 618
4 |1 311 6|5 815

Routing with and without position information

« Without position information:
— Flooding
—> does not scale

— Distance Vector Routing
-> does not scale

— Source Routing
— increased per-packet overhead
— no theoretical results, only simulation

« With position information:
— Greedy Routing
- may fail: message may get stuck in a “dead end”
— Geometric Routing
- It is assumed that each node knows its position

Obtaining Position Information

» Attach GPS to each sensor node
— Often undesirable or impossible
— GPS receivers clumsy, expensive, and energy-inefficient

« Equip only a few designated nodes with a GPS
— Anchor (landmark) nodes have GPS
— Non-anchors derive their position through communication
(e.g., count number of hops to different anchors)

< y
W Anchor density determines
A quality of solution

What about no GPS at all?

* |n absence of GPS-equipped anchors...
- ...nodes are clueless about real coordinates.

« For many applications, real coordinates are not necessary
- Virtual coordinates are sufficient

<) -

O 90 44' 56" East 90 44' 58" East
- s 470 30"19) North 470 3619" North

e sl Sl

Sl

Sl

OO

@) o e @ @)
90 44! 55" East 90 44' 57" East
470 3(5'0;%%)' North 470 3315 North

real coordinates virtual coordinates

What are ,good” virtual coordinates?

Given the connectivity information for each node and knowing the
underlying graph is a UDG find virtual coordinates in the plane

such that all connectivity requirements are fulfilled, i.e. find a
realization (embedding) of a UDG:

— each edge has length at most 1

— between non-neighbored nodes the distance is more than 1

Finding a realization of a UDG from connectivity information only is
NP-hard...

— [Breu, Kirkpatrick, Comp.Geom.Theory 1998]

...and also hard to approximate
— [Kuhn, Moscibroda, Wattenhofer, DIALM 2004]

Geometric Routing without Geometry

« For many applications, like routing, finding a realization of a UDG is
not mandatory

« Virtual coordinates merely as infrastructure for geometric routing

- Pseudo geometric coordinates:
— Select some nodes as anchors: a,,a,, ..., a,

— Coordinate of each node u is its hop-distance to all anchors:
(d(u,a,),d(u,a,),..., d(u,a,))

Q)@ Q@

 Requirements:
— each node uniquely identified: Naming Problem

— routing based on (pseudo geometric) coordinates possible: Routing
Problem

Pseudo-geometric routing in the grid: Naming

Ancaor 1 (4) Ancaor 2
(4.2)
14)
V(4,4) [R.A. Melter and I. Tomescu,
,4) Comput. Vision, Graphics.
o, Image Process., 1984]:
(4,6) landmarks in graphs
(4)
"(4 8) Lemma: The naming problem
4) ’ in the grid can be solved
(|z4 10) with two anchors.

Pseudo-geometric routing in the grid: Routing

Anchor 1 Anchor 2
Rule: pass message
to neighbor which
IS closest to
9,9) 16.4) destination
(3,91 [4.8)15.7) 16.6)
(4,10} 15,9)16.8) [7.7)
(5,11) 6,10]7,9)
Lemma: The routing problem
in the grid can be solved

with two anchors.

Problem: UDG is usually not a grid

« Recursive construction
of a unit dist tree (UDT)
which needs Q(n) anchors

Pseudo-geometric routing in the UDT: Naming

« Leaf-siblings can only be distinguished if one of them is an anchor:

Anchor 1..Anchor k

(a,b,c,...)

(a+1,b+1,c+1,..) (a+1,b+1,c+1,..)
Anchor k+1

Lemma: in a unit disk tree with n nodes
there are up to ®(n) leaf-siblings.
That is, we need to ®(n) anchors.

Pseudo-geometric routing in the ad hoc networks

« Naming and routing in grid quite good, in previous UDT example
very bad

« Real-world ad hoc networks are very probable neither perfect grids
nor naughty unit disk trees

Truth is somewhere in

I between... l

Summary of Results

« If position information is available geo-routing is a feasible option.

« Face routing guarantees to deliver the message.

« By restricting the search area the efficiency is OPTZ.

« Because of a lower bound this is asymptotically optimal.

« Combining greedy and face gives efficient algorithm.

« 3D geo-routing is impossible.

« Even if there is no position information, some ideas might be helpful.

« Geo-routing is probably the only class of routing that is well
understood.

 There are many adjacent areas: topology control, location
services, routing in general, etc.

Open problem

* One of the most-understood topics. In that sense it is hard to come
up with a decent open problem. Let’s try something wishy-washy.

« For a 2D UDG the efficiency of geo-routing can be quadratic to an
optimal algorithm (with routing tables). However, the worst-case
example is quite special. Open problem: How much information
does one need to store in the network to guarantee only constant
overhead?

— Variant: Instead of UDG some more realistic model
— How can one maintain this information if the network is dynamic?

