
Ad Hoc and Sensor Networks Roger Wattenhofer 6/1Ad Hoc and Sensor Networks Roger Wattenhofer

Data Gathering
Chapter 6

Ad Hoc and Sensor Networks Roger Wattenhofer 6/2Ad Hoc and Sensor Networks Roger Wattenhofer

Rating

Area maturity

Practical importance

Theoretical importance

First steps Text book

No apps Mission critical

Not really Must have

Ad Hoc and Sensor Networks Roger Wattenhofer 6/3

Overview

Motivation

Data gathering with coding

Self-coding

Excursion: Shallow Light Tree

Foreign coding

Multicoding

Data gathering with aggregation

Max, Min, Average,

Universal data gathering tree

Energy-efficient data gathering: Dozer

Ad Hoc and Sensor Networks Roger Wattenhofer 6/4

Sensor networks

Sensor nodes

Processor & memory

Short-range radio

Battery powered

Requirements

Monitoring geographic region

Unattended operation

Long lifetime

Variants

Data gathering (continuous)

DB requests

Event detection

Ad Hoc and Sensor Networks Roger Wattenhofer 6/5Ad Hoc and Sensor Networks Roger Wattenhofer

Data gathering

All nodes produce relevant

information about their vicinity

periodically.

Data is conveyed to an

information sink for further

processing.

Routing scheme

data forwarded to the sink?

Ad Hoc and Sensor Networks Roger Wattenhofer 6/6Ad Hoc and Sensor Networks Roger Wattenhofer

Time coding

The simplest trick in the

book: If the sensed data of a

node changes not too often

(e.g. temperature), the node

only needs to send a new

message when its data

(significantly) changes.

Improvement: Only send

change of data, not actual

data (similar to video

codecs)

Ad Hoc and Sensor Networks Roger Wattenhofer 6/7Ad Hoc and Sensor Networks Roger Wattenhofer

More than one sink?

Use the anycast approach, and send to the closest sink.

In the simplest case, a source wants to minimize the number of

hops. To make anycast work, we only need to implement the regular

distance-vector routing algorithm.

However, one can imagine more complicated schemes where e.g.

sink load is balanced, or even intermediate load is balanced.

Ad Hoc and Sensor Networks Roger Wattenhofer 6/8Ad Hoc and Sensor Networks Roger Wattenhofer

Correlated Data

Different sensor nodes partially

monitor the same spatial region.

Data might be processed as it is

routed to the information sink.

Data correlation

In-network coding

At which node is node

Find a routing scheme and a coding scheme to deliver data

packets from all nodes to the sink such that the overall

energy consumption is minimal.

Ad Hoc and Sensor Networks Roger Wattenhofer 6/9Ad Hoc and Sensor Networks Roger Wattenhofer

Coding strategies

Multi-input coding

Exploit correlation among several nodes.

Combined aggregation of all incoming data.

Single-input coding

Encoding of a nodes data only depends on the side

information of one other node.

Recoding at intermediate nodes

Synchronous communication model

No recoding at intermediate nodes

No waiting for belated information at

intermediate nodes

Ad Hoc and Sensor Networks Roger Wattenhofer 6/10Ad Hoc and Sensor Networks Roger Wattenhofer

Single-input coding

Self-coding

A node can only encode its raw

data in the presence of side

information.

Foreign coding

A node can use its raw data to

encode data it is relaying.

u v

w

t

sr sr

2sr+se

u v

w

t

sr sr

sr+2se

Raw data size

Encoded data size

4sr+ se

3sr + 2se

Ad Hoc and Sensor Networks Roger Wattenhofer 6/11Ad Hoc and Sensor Networks Roger Wattenhofer

Self-coding

The cost of an optimal topology

Set of nodes with no

side information

Set of nodes that encode
with data from u

Steiner tree
Shortest path

Two ways to lower-bound this equation:

Ad Hoc and Sensor Networks Roger Wattenhofer 6/12Ad Hoc and Sensor Networks Roger Wattenhofer

Algorithm

LEGA (Low Energy Gathering Algorithm)

Based on the shallow light tree (SLT)

Compute SLT rooted at the sink t.

The sink t transmits its packet pt

Upon reception of a data packet pj at node vi
Encode pi with pj pi

j

Transmit pi
j to the sink t

Transmit pi to all children

Size = sr

Size = se

Ad Hoc and Sensor Networks Roger Wattenhofer 6/13Ad Hoc and Sensor Networks Roger Wattenhofer

Excursion: Shallow-Light Tree (SLT)

Introduced by [Awerbuch, Baratz, Peleg, PODC 1990]

Improved by [Khuller, Raghavachari, Young, SODA 1993]

new name: Light-Approximate-Shortest-Path-Tree (LAST)

Idea: Construct a spanning tree for a given root r that is both a MST-

approximation as well as a SPT-approximation for the root r. In

particular, for any > 0

Remember:

Ad Hoc and Sensor Networks Roger Wattenhofer 6/14Ad Hoc and Sensor Networks Roger Wattenhofer

MST vs. SPT

Is a good SPT not automatically a good MST (or vice versa)?

MST SPT SLT

Result & Preordering

Main Theorem: Given an > 1, the algorithm returns a tree T rooted

at r such that all shortest paths from r to u in T have cost at most

the shortest path from r to u in the original graph (for all nodes u).

Moreover the total cost of T is at most = 1+2/(-1) the cost of the

MST.

We need an ingredient:

A preordering of a rooted

tree is generated when

ordering the nodes

of the tree as visited by

a depth-first search

algorithm.

Ad Hoc and Sensor Networks Roger Wattenhofer 6/16Ad Hoc and Sensor Networks Roger Wattenhofer

The SLT Algorithm

1. Compute MST H of Graph G;

2. Compute all shortest paths (SPT) from the root r.

3. Compute preordering of MST with root r.

4. For all nodes v in order of their preordering do

Compute shortest path from r to u in H. If the cost of this shortest path

in H is more than a factor more than the cost of the shortest path in

G, then just add the shortest path in G to H.

5. Now simply compute the SPT with root r in H.

An example, = 2

Graph

MST

SPT

x

x

Ad Hoc and Sensor Networks Roger Wattenhofer 6/18Ad Hoc and Sensor Networks Roger Wattenhofer

Proof of Main Theorem

The SPT -approximation is clearly given since we included all

necessary paths during the construction and in step 5 only removed

edges which were not in the SPT.

We need to show that our final tree is a -approximation of the MST.

In fact we show that the graph H before step 5 is already a -

approximation!

A preordering lemma

Lemma: Let T be a rooted spanning tree, with root r, and let z0, z1,

k be arbitrary nodes of T in preorder. Then,

is traversed at most twice.

Remark: Exactly like the

2-approximation algorithm

for metric TSP.

kX

i=1

dT (zi¡1; zi) · 2 ¢ cost(T):

Ad Hoc and Sensor Networks Roger Wattenhofer 6/20Ad Hoc and Sensor Networks Roger Wattenhofer

Proof of Main Theorem (2)

Let z1, z2 k be the set of k nodes for which we added their

shortest paths to the root r in the graph in step 4. In addition, let z0 be

the root r. The node zi can only be in the set if (for example)

dG(r,zi-1) + dMST(zi-1,zi) > dG(r,zi), since the shortest path (r,zi-1) and

the path on the MST (zi-1,zi) are already in H when we study zi.

We can rewrite this as dG(r,zi) - dG(r,zi-1) < dMST(zi-1,zi). Summing up:

dG(r,z1) - dG(r,z0) < dMST(z0,z1) (i=1)

dG(r,z2) - dG(r,z1) < dMST(z1,z2) (i=2)

dG(r,zk) - dG(r,zk-1) < dMST(zk-1,zk) (i=k)

(-1) dG(r,zi) + dG(r,zk) < dMST(zi-1,zi)

Ad Hoc and Sensor Networks Roger Wattenhofer 6/21Ad Hoc and Sensor Networks Roger Wattenhofer

Proof of Main Theorem (3)

In other words, (-1) dG(r,zi) < dMST(zi-1,zi)

All we did in our construction of H was to add exactly at most the

cost dG(r,zi) to the cost of the MST. In other words,

cost(H) · cost(MST) + dG(r,zi).

Using the inequality on the top of this slide we have

cost(H) < cost(MST) + 1/(-1) dMST(zi-1,zi).

Using our preordering lemma we have
cost(H) · cost(MST) + 1/(-1) 2cost(MST) = 1+2/(-1) cost(MST)

= 1+2/(-1).

How the SLT can be used

The SLT has many applications in communication networks.

Essentially, it

bounds the

cost of unicasting

(using the SPT)

and broadcasting

(using the MST).

Remark: If you

use = ,

then

= 1+2/(-1) = .

[www.dia.unisa.it/~ventre]

Ad Hoc and Sensor Networks Roger Wattenhofer 6/23Ad Hoc and Sensor Networks Roger Wattenhofer

Analysis of LEGA

Theorem: LEGA achieves a -approximation

of the optimal topology. (We use = .)

tt

Slide 6/11

Ad Hoc and Sensor Networks Roger Wattenhofer 6/24Ad Hoc and Sensor Networks Roger Wattenhofer

Foreign coding

MEGA (Minimum-Energy Gathering Algorithm)

Superposition of two tree constructions.

Compute the shortest path tree (SPT) rooted at t.

Compute a coding tree.

Determine for each node u a corresponding

encoding node v.

u v

w

t

sr sr

sr+2se

Encoding must not result

in cyclic dependencies.

t

Coding tree

SPT u

t

u

vv

Ad Hoc and Sensor Networks Roger Wattenhofer 6/25Ad Hoc and Sensor Networks Roger Wattenhofer

Coding tree construction

Build complete directed graph

Weight of an edge e=(vi,vj)

Cost from vi to the

encoding node vj.

Cost from vj to

the sink t.

Compute a directed minimum spanning tree (arborescence) of this

graph. (This is not trivial, but possible.)

Theorem: MEGA computes a minimum-energy

data gathering topology for the given network.

All costs are summarized in the edge weights

of the directed graph.

Number of bits when

encoding vi vj

Ad Hoc and Sensor Networks Roger Wattenhofer 6/26Ad Hoc and Sensor Networks Roger Wattenhofer

Summary

Self-coding:

The problem is NP-hard [Cristescu et al, INFOCOM 2004]

LEGA uses the SLT and gives a -approximation.

Attention: We assumed that the raw data resp. the encoded data

always needs sr resp. se bits (no matter how far the encoding data is!).

This is quite unrealistic as correlation is usually regional.

Foreign coding

The problem is in P, as computed by MEGA.

What if we allow both coding strategies at the same time?

What if multicoding is still allowed?

Ad Hoc and Sensor Networks Roger Wattenhofer 6/27Ad Hoc and Sensor Networks Roger Wattenhofer

Multicoding

Hierarchical matching algorithm [Goel & Estrin SODA 2003].

We assume to have concave,

non-decreasing aggregation

functions. That is, to transmit

data from k sources, we need
f(k) bits with f(0)=0, f(k) ¸ f(k-1),

and f(k+1)/f(k) · f(k)/f(k-1).

The nodes of the network must be a metric space*, that is, the cost

of sending a bit over edge (u,v) is c(u,v), with

Non-negativity: c(u,v) ¸ 0

Symmetry: c(u,v) = c(v,u)

Triangle inequality: c(u,w) · c(u,v) + c(v,w)

#nodes

#
b

it
s

Ad Hoc and Sensor Networks Roger Wattenhofer 6/28Ad Hoc and Sensor Networks Roger Wattenhofer

The algorithm

Remark: If the network is not a complete graph, or does not obey

the triangle inequality, we only need to use the cost of the shortest

path as the distance function, and we are fine.

Let S be the set of source nodes. Assume that S is a power of 2. (If

not, simply add copies of the sink node until you hit the power of 2.)

Now do the following:

1. Find a min-cost perfect matching in S.

2. For each of the matching edges, remove one of the two nodes from

S (throw a regular coin to choose which node).

3. If the set S still has more than one node, go back to step 1. Else

connect the last remaining node with the sink.

Ad Hoc and Sensor Networks Roger Wattenhofer 6/29Ad Hoc and Sensor Networks Roger Wattenhofer

The result

Theorem: For any concave, non-decreasing aggregation function f,

and for [optimal] total cost C[*], the hierarchical matching algorithm

guarantees

That is, the expectation of the worst cost overhead is logarithmically

bounded by the number of sources.

Proof: Too intricate to be featured in this lecture.

Ad Hoc and Sensor Networks Roger Wattenhofer 6/30Ad Hoc and Sensor Networks Roger Wattenhofer

Remarks

For specific concave, non-decreasing aggregation functions, there

are simpler solutions.

For f(x) = x the SPT is optimal.

For f(x) = const (with the exception of f(0) = 0), the MST is optimal.

For anything in between it seems that the SLT again is a good choice.

For any a priori known f one can use a deterministic solution by [Chekuri,

Khanna, and Naor, SODA 2001]

If we only need to minimize the maximum expected ratio (instead of the

expected maximum ratio), [Awerbuch and Azar, FOCS 1997] show how it

works.

Again, sources are considered to aggregate equally well with other

sources. A correlation model is needed to resemble the reality

better.

Ad Hoc and Sensor Networks Roger Wattenhofer 6/31Ad Hoc and Sensor Networks Roger Wattenhofer

Other work using coding

LEACH [Heinzelman et al. HICSS 2000]: randomized clustering with data

aggregation at the clusterheads.

Heuristic and simulation only.

For provably good clustering (see chapter on clustering).

Correlated data gathering [Cristescu et al. INFOCOM 2004]:
Coding with Slepian-Wolf

Distance independent correlation among nodes.

Encoding only at the producing node in presence of side information.

Same model as LEGA, but heuristic & simulation only.

NP-hardness proof for this model.

TinyDB and TinySQL

Use paradigms

familiar from

relational

databases to

simplify the

interface for

the application

developer.

TinyDB then supports

in-network aggregation to

speed up communication.

Distributed Aggregation

Growing interest in distributed

aggregation!

Sensor networks, distributed

databases...

Aggregation functions?

Distributive (max, min, sum, count)

Algebraic (plus, minus, average)

Holistic (median, kth smallest/largest value)

Combinations of these functions enable complex queries!

average of the 10% largest

What cannot be

computed using

these functions?

Aggregation Model

How difficult is it to compute these aggregation primitives?

Model:

Connected graph G = (V,E) of diameter DG, |V| = n.
Nodes vi and vj can communicate directly if (vi,vj) 2 E.

A spanning tree is available (diameter D 2DG)

Asynchronous model of communication.

All nodes hold a single element.

Messages can contain only a constant number of elements.

Can easily be

generalized to

an arbitrary

number of

elements!

2

Simple

breadth-first

construction!

19

8

9

20

365

4968128

101

1980

28 12345

31415

2718

3

Ad Hoc and Sensor Networks Roger Wattenhofer 6/35Ad Hoc and Sensor Networks Roger Wattenhofer

Distributive & Algebraic Functions

How difficult is it to compute these aggregation primitives?

We are interested in the time complexity!
Worst-case for every

legal input and every

execution scenario!

Slowest message arrives

after 1 time unit!

Distributive (sum, count...) and

algebraic (plus, minus...) functions

are easy to compute:

Time complexity: (D)

Use a simple flooding-echo procedure convergecast!

What about holistic functions (such as k-selection)???

Is it (really) harder...?

Impossible to perform in-network aggregation?

Holistic Functions

Total Bytes Xmitted vs. Aggregation Function

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

EXTERNAL MAX AVERAGE COUNT MEDIAN
Aggregation Function

T
o

ta
l
B

y
te

s
 X

m
it

te
d

Thus, we have shown that

(...) in network aggregation

can reduce communication

costs by an order of

magnitude over centralized

approaches, and that, even

in the worst case (such as

with MEDIAN), it provides

performance equal to the

centralized approach

TAG simulation: 2500 nodes in a 50x50 grid

It is widely believed that holistic functions are hard to compute using

in-network aggregation.

Example: TAG is an aggregation service for ad-hoc sensor networks

It is fast for other aggregates, but not for the MEDIAN aggregate:

Is it difficult?

However, there is quite a lot of literature on distributed k-selection:

A straightforward idea: Use the sequential algorithm by Blum et al. also

in a distributed setting Time Complexity: O(D·n0.9114).
Not so

great...

A simple idea: Use binary search to find the kth smallest value Time

Complexity: O(D·log xmax), where xmax is the maximum value.

Assuming that xmax 2 O(nO(1)), we get O(D·log n)...

A better idea: Select values randomly, check how many values are

smaller and repeat these two steps!

Time Complexity: O(D·log n) in expectation! Nice! Can we

do better?

We do not

want the

complexity to

depend on the

values!

Randomized Algorithm

Choosing elements uniformly at random is a

good idea...

How is this done?

Assuming that all nodes know the sizes

n1,...,nt
of the subtrees rooted at their children

v1,...,vt, the request is forwarded to node vi

with probability:

pi := ni / (1+ k nk).

With probability 1 / (1+ k nk) node v chooses itself.

...n1 n2 nt

p1
p2

pt

v

request

Key observation: Choosing an element randomly requires

O(D) time!

Use pipe-lining to select several random elements!

D elements in O(D) time!

Randomized Algorithm

Our algorithm also operates in phases The set of candidates

decreases in each phase!

A candidate is a node whose element is possibly the solution.

A phase of the randomized algorithm:

1. Count the number of candidates in all subtrees

2. Pick O(D) elements x1,...,xd uniformly at random

3. For all those elements, count the number of

smaller elements!

Each step can

be performed

in O(D) time!

-1 1x1 x2 xd

n1 elem. n2 elem. nd+1 elem.

a1a2 an-1an

Randomized Algorithm

Using these counts, the number of candidates can

be reduced by a factor of D in a constant number of

phases with high probability.

We get the following result:

With probability at

least 1-1/nc for a

constant c .

Theorem: The time complexity of the

randomized algorithm is O(D·logD n) w.h.p.

We further proved a time lower bound of (D·logD n).

This simple randomized algorithm is asymptotically optimal!

The only remaining question: What can we do deterministically???

More on

that later...

Deterministic Algorithm

Why is it difficult to find a good deterministic algorithm???

Hard to find a good selection of elements that provably

reduces the set of candidates!

Simple idea: Always propagate the median of all received values!

Problem: In one phase, only the hth

smallest element is found if h is the

height of the tree...

Time complexity: O(n / h)

One could do a lot better!!!

(Not shown in this course.)

3

2 100

3

2

1 100 99 102

100

1 100 99 102

Thomas Locher, ETH Zurich @ SPAA 2007 42

Lower Bound

The proof of the lower bound of (D·logD n) consists of two parts:

Part I. Find a lower bound for the case of two nodes u and v

with N elements each.

Let u0 < u1 < ... < uN-1 and v0 < v1 < ... < vN-1.

u
0

u
1

u
N-1

...

v
0

v
1

v
N-1

...

u v

How are the 2N elements distributed on u and v?
What is the

order
between all uui

and vvj?

Ad Hoc and Sensor Networks Roger Wattenhofer 6/43Ad Hoc and Sensor Networks Roger Wattenhofer

Lower Bound

Assume N = 2b. We use b independent Bernoulli variables

X0,...,Xb-1 to distribute the elements!
If Xb-1 = 0 N/2 smallest elements go to u and the N/2

largest elements go to v.

If Xb-1 = 1 the other way round.

Ordered list of

all 2N elements!

The remaining N elements are recursively distributed using

the other variables X0,...,Xb-2!

u v

a1a2 ... a2N-1a2N...

Lower Bound

Crucial observation: For all 2b possibilities

for X0,...,Xb-1, the median is a different

element.

Determining all Xi is equivalent to finding

the median!

We showed that at least (log2B n) rounds are required if B elements

can be sent in a single round in this model!

Part II. Find a lower bound for the original model.

u0

u1

uN-1

v0

v1

vN-1

D-2 dummy nodesLook at the following

graph G of diameter D:

Xb-1

Xb-2

Thomas Locher, ETH Zurich @ SPAA 2007 45

Lower Bound

One can show that a time lower bound for the alternative model

implies a time lower bound for the original model!

u0

u1

uN-1

v0

v1

vN-1

D-2 dummy nodes

u vv

alternative model original model

Theorem: (D·logD min{k,n-k}) rounds are needed to

find the kth smallest element.

D·logD n) lower bound

to find the median!

Median Summary

Simple randomized algorithm with time

complexity O(D·logD n) w.h.p.

Easy to understand, easy to implement...

Even asymptotically optimal! Our lower bound

shows that no algorithm can be significantly

faster!

Deterministic algorithm with time complexity

O(D·logD
2 n).

If c 1: D = nc k-selection can be

solved efficiently in (D) time even

deterministically!

Recall the

50x50 grid

used to test out

TAG!

Ad Hoc and Sensor Networks Roger Wattenhofer 6/47Ad Hoc and Sensor Networks Roger Wattenhofer

X

A

B

FC

GZ

Y

D

E

17

23

23

15

20

22

18
22

22

Max = 23

19

Data Aggregation: Universal Spanning Tree

Average, Median, Count Distinct, ...?!

Ad Hoc and Sensor Networks Roger Wattenhofer 6/48Ad Hoc and Sensor Networks Roger Wattenhofer

Selective data aggregation

In sensor network applications

Queries can be frequent

Sensor groups are time-varying

Events happen in a dynamic fashion

Option 1: Construct aggregation trees for each group

Setting up a good tree incurs communication overhead

Option 2: Construct a single spanning tree

When given a sensor group, simply use the induced tree

Ad Hoc and Sensor Networks Roger Wattenhofer 6/49Ad Hoc and Sensor Networks Roger Wattenhofer

Group-Independent (a.k.a. Universal) Spanning Tree

Given

A set of nodes V in the Euclidean plane (or forming a metric space)

A root node r 2 V

Define stretch of a universal spanning tree T to be

Ad Hoc and Sensor Networks Roger Wattenhofer 6/50Ad Hoc and Sensor Networks Roger Wattenhofer

root/sink

Example

The red tree is the universal spanning tree. All links cost 1.

Ad Hoc and Sensor Networks Roger Wattenhofer 6/51Ad Hoc and Sensor Networks Roger Wattenhofer

root/sink

Given the lime

Ad Hoc and Sensor Networks Roger Wattenhofer 6/52Ad Hoc and Sensor Networks Roger Wattenhofer

root/sink

Induced Subtree

The cost of the induced subtree for this set S is 11. The optimal was 8.

Ad Hoc and Sensor Networks Roger Wattenhofer 6/53Ad Hoc and Sensor Networks Roger Wattenhofer

Main results

[Jia, Lin, Noubir, Rajaraman and Sundaram, STOC 2005]

Theorem 1: (Upper bound)

For the minimum UST problem on Euclidean plane, an

approximation of O(log n) can be achieved within polynomial time.

Theorem 2: (Lower bound)

No polynomial time algorithm can approximate the minimum UST

problem with stretch better than (log n / log log n).

Proofs: Not in this lecture.

Algorithm sketch

For the simplest Euclidean case:

Recursively divide the plane and select random node.

Results: The induced tree

has logarithmic overhead.

The aggregation delay is

also constant.

Simulation with random node distribution & random events Environmental Monitoring

Continuous data gathering

Unattended operation

Low data rates

Battery powered

Network latency

Dynamic bandwidth demands

Energy conservation is crucial to prolong network lifetime

Energy-Efficient Protocol Design

Communication subsystem is the main energy consumer

Power down radio as much as possible

Issue is tackled at various layers

MAC

Topology control / clustering

Routing

TinyNode Power Consumption

uC sleep, radio off 0.015 mW

Radio idle, RX, TX 30 40 mW

Orchestration of the whole network stack

to achieve duty cycles of ~1

Ad Hoc and Sensor Networks Roger Wattenhofer 6/58Ad Hoc and Sensor Networks Roger Wattenhofer

contention window

Dozer System

Tree based routing towards data sink

No energy wastage due to multiple paths

Current strategy: SPT

TDMA based link scheduling

Each node has two independent schedules

No global time synchronization

The parent initiates each TDMA round with a beacon

Enables integration of disconnected nodes

time

b
e

a
c
o

n

b
e

a
c
o

n

activation frame

child

parent

Dozer System

Parent decides on its children data upload times

Each interval is divided into upload slots of equal length

Upon connecting each child gets its own slot

No traditional MAC layer

Transmissions happen at exactly predetermined point in time

Collisions are explicitly accepted

Random jitter resolves schedule collisions

time

jitter

slot 1 slot 2 slot n

data transfer

Clock drift, queuing,

bootstrap, etc.

Ad Hoc and Sensor Networks Roger Wattenhofer 6/60Ad Hoc and Sensor Networks Roger Wattenhofer

Dozer System

Lightweight backchannel

Beacon messages comprise commands

Bootstrap

Scan for a full interval

Suspend mode during network downtime

Potential parents

Avoid costly bootstrap mode on link failure

Periodic refresh the list

periodic channel

activity check

Evaluation

Platform

TinyNode

MSP 430

Semtech XE1205

TinyOS 1.x

Testbed

40 Nodes

Indoor deployment

> 1 month uptime

30 sec beacon interval

2 min data sampling interval

Dozer in Action

Tree Maintenance

on average 1.2%

1 week of operation

on average 1.2%

1 week of operation on average 1.67

Mean energy consumption of 0.082 mW

Energy Consumption

on average 1.67

Mean energy consumption of 0.082

Energy Consumption

Relay node

No scanning

2.8

3.2

Leaf node

Few neighbors

Short disruptions

scanning

overhearing

updating

#children

Dozer Conclusions & Possible Future Work

Conclusions

Dozer achieves duty cycles in the magnitude of 1

Abandoning collision avoidance was the right thing to do.

Possible Future work

Incorporate clock drift compensation.

Optimize delivery latency of sampled sensor data.

Make use of multiple frequencies to further reduce collisions.

Ad Hoc and Sensor Networks Roger Wattenhofer 6/68Ad Hoc and Sensor Networks Roger Wattenhofer

Open problem

Continuous data gathering is somewhat well understood, both

practically and theoretically, in contrast to the two other paradigms,

event detection and query processing.

One possible open question is about event detection. Assume that

you have a battery-operated sensor network, both sensing and

having your radio turned on costs energy. How can you build a

network that raises an alarm quickly if some large-scale event

(many nodes will notice the event if sensors are turned on)

happens? What if nodes often sense false positives (nodes often

sense something even if there is no large-scale event)?

