Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Discrete Event Systems Solution to Exercise 11

1 "Hopp FCB!"

a) We know that the minimum of i independent and exponentially distributed (with parameter λ) random variables is an exponentially distributed random variable with parameter $i \lambda$. Thus, we have the following birth-death-process:

b) Let p_{i} be the probability of state i in the equilibrium. In a general birth-death-process with transition parameters λ_{i} and μ_{i}, it holds that

$$
p_{1} \mu_{1}=p_{0} \lambda_{0} \Rightarrow p_{1}=\frac{\lambda_{0}}{\mu_{1}} p_{0}
$$

By induction, we have

$$
p_{i+1} \cdot \mu_{i+1}+p_{i-1} \cdot \lambda_{i-1}=p_{i} \cdot\left(\lambda_{i}+\mu_{i}\right)
$$

and thus

$$
p_{i}=\frac{\lambda_{0} \cdot \lambda_{1} \cdots \lambda_{i-1}}{\mu_{1} \cdot \mu_{2} \cdots \mu_{i}} p_{0} .
$$

Applying this formula to our process yields

$$
p_{i}=\frac{n(n-1) \cdots \cdot(n-i+1) \cdot \lambda^{i}}{1 \cdot 2 \cdots \cdot i \cdot \mu^{i}} p_{0}=\binom{n}{i}\left(\frac{\lambda}{\mu}\right)^{i} p_{0} .
$$

Let $\rho:=\frac{\lambda}{\mu}$. Since the sum of all probabilities equals 1 , we have

$$
p_{0} \sum_{i=0}^{n}\binom{n}{i} \rho^{i}=p_{0}(1+\rho)^{n}=1 \Rightarrow p_{0}=\frac{1}{(1+\rho)^{n}} .
$$

Finally,

$$
p_{i}=\frac{\binom{n}{i} \rho^{i}}{(1+\rho)^{n}}
$$

c) A team is able to play if and only if there are at least eleven fit players:

$$
p_{11}+p_{12}+\cdots+p_{20}=0.965
$$

Thus, the FCB team has enough players that it can participate in most of the matches (probability > 95%).

2 A Binary Game

a) If a player writes both 0 and 1 with probability $\frac{1}{2}$, the sum is 0 or 1 modulo 2 with probability $\frac{1}{2}$, independently of the other player's strategy!
Excursion: In Game Theory, ${ }^{1}$ a set of strategies with the property that no player can benefit by changing his strategy while the other players keep their strategies, is called a Nash Equilibrium. In our example, the two strategies where both players write 0 and 1 with probability $\frac{1}{2}$ is a Nash equilibrium. However, Anna's and Markus' strategies do not constitute an equilibrium. To see this, assume that Anna changes its strategy as follows: Knowing that Markus writes 1 with probability 0.6 , Anna can always write 1 and thus wins 60% of all games on average. Therefore, Anna has indeed an insensitive to change her strategy!
b) We model the situation using 4 states, where the left bit denotes Anna's decision and the right bit Markus' decision in the last round. Note that Anna' strategy is deterministic. We have (transitions with probability 0 not shown):

Anna wins in the shaded states 00 an 11 . We calculate the probability of these two states in the equilibrium:

$$
\begin{gathered}
p_{00}=.4 p_{00}+.4 p_{10} \\
p_{01}=.6 p_{00}+.6 p_{10} \\
p_{11}=.6 p_{01}+.6 p_{11} \\
1=p_{00}+p_{01}+p_{10}+p_{11}
\end{gathered}
$$

and get

$$
p_{00}=.16, p_{01}=.24, p_{10}=.24, p_{11}=.36
$$

Since $p_{00}+p_{11}=.52$, Anna' strategy is better!
c) First note that both strategies are deterministic. Encoding the states with four bits (from left to right: Anna two rounds ago, Markus two rounds ago, Anna one round ago, Markus one round ago), showing only the reachable states and the possible edges (probability 1), we have:

[^0]Note that the first two games-where the strategies are not defined completely yet-decide which of these two cycles describes the following games. Thus, these initial conditions determine which player wins more games in the long run.

3 Gloriabar

a) The situation can be modeled by a $\mathrm{M} / \mathrm{M} / 1$ queue. We have an arrival rate of $\lambda=540 /(90$. $60)=0.1$ (persons per second), and $\mu=1 / 9$ (persons per second). Thus $\rho=\lambda / \mu=0.9$. Therefore, the expected waiting time is $W=\rho /(\mu-\lambda)=81$ seconds. The expected time until the student gets her menu is given by $T=1 /(\mu-\lambda)=90$ seconds.
b) The queue length is given by $N=\rho^{2} /(1-\rho)=8.1$.
c) We require that $T=1 /(\mu-0.1)=90 / 2$. Thus, $\mu=11 / 90$, i.e., instead of 9 secs, the service time should be roughly $90 / 11=8.2$ secs.

4 Queuing Networks

a)

b) We have an open queuing network an hence we can apply Jackson's theorem (slides 97ff):

$$
\begin{array}{r}
\lambda_{d}=\lambda+\lambda_{b}\left(1-p_{b}\right) \\
\lambda_{t}=\lambda_{d}\left(1-p_{d}\right) \\
\lambda_{b}=\lambda_{t}\left(1-p_{t}\right) \tag{3}
\end{array}
$$

Solving this equation system gives:

$$
\begin{aligned}
\lambda_{d} & =\frac{\lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)} \\
\lambda_{t} & =\frac{\left(1-p_{d}\right) \lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)} \\
\lambda_{b} & =\frac{\left(1-p_{d}\right)\left(1-p_{t}\right) \lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)}
\end{aligned}
$$

c) The waiting time is given by $W_{t}=\rho_{t} /\left(\mu_{t}-\lambda_{t}\right)$, where $\rho_{t}=\lambda_{t} / \mu_{t}$.
d) We have

$$
\begin{array}{ccc}
\lambda_{d}=10, & \lambda_{t}=25 / 3, & \lambda_{b}=20 / 3 \\
\rho_{d}=1 / 2, & \rho_{t}=5 / 6, & \rho_{b}=2 / 3
\end{array}
$$

Therefore, by the formula of slide 79 , the number of customers in the system is given by

$$
N=\frac{\lambda_{d}}{\mu_{d}-\lambda_{d}}+\frac{\lambda_{t}}{\mu_{t}-\lambda_{t}}+\frac{\lambda_{b}}{\mu_{b}-\lambda_{b}}=8 .
$$

Applying Little's formula to the entire system gives $T=N / \lambda=8 / 5$ hours.
e) We have

$$
\lambda_{t}=\frac{\left(1-p_{d}\right) \lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)}=1 \Leftrightarrow p_{d}=23 / 28 .
$$

5 Theory of Ice Cream Vending

The situation can be described by a classic $M / M / 2$ system. According to slide 90 , there is an equilibrium iff

$$
\rho=\lambda /(2 \mu)<1
$$

For the stationary distribution, in holds that

$$
\pi_{0}=\frac{1}{1+2 \rho+4 \rho^{2} /(2(1-\rho))}=\frac{1-\rho}{1+\rho} .
$$

[^0]: ${ }^{1}$ For an introduction to Game Theory, e.g.: A Course in Game Theory, M. Osborne and A. Rubinstein, MIT Press, 1994.

