Discrete Event Systems Sample Solution to Exercise 5

1 Counter Automaton

- A counter automaton is basically a finite automaton augmented by a counter. For every regular language $L \in L_{r e g}$, there is a finite automaton A which recognized L. We can construct a counter automaton C for recognizing L by simply taking over the states and transitions of A and not using the counter at all. Clearly C accepts L. This holds for every regular language and therefore, $L_{\text {reg }} \subset L_{\text {count }}$.
- Consider the language L of all strings over the alphabet $\Sigma=\{0,1\}$ with an equal number of 0 s and 1 s . We can construct a counter automaton with a single state q that increments/decrements its counter whenever the input is a $0 / 1$. If the value of the counter is equal to 0 , it accepts the string. Hence, L is in $L_{\text {count }}$.
On the other hand, it can be proven (using the pumping lemma) that L is not in $L_{\text {reg }}$ and it therefore follows $L_{\text {count }} \notin L_{\text {reg }}$.
- First, we show that a pushdown automaton can simulate a counter automaton. Hence, PDA's are at least as powerful as CA's! The simulation of a given CA works as follows. We construct a PDA which has exactly the same states as the CA. The transitions also remain between the same pairs of states, but instead of operating on a INC/DEC register, we have to use a stack. Concretely, we store the state of the counter on the stack by pushing ' + ' and '-' on the stack. For instance, a counter value ' 3 ' is represented by three ' + ' on the stack, and similarly a value ' -5 ' by five ' - '. Therefore, when the CA checks whether the counter equals 0 , the PDA can check whether its stack is empty.
In the following, we give just one example of how the transitions have to be transformed. Assume a transition of the counter automaton which, on reading a symbol s increments the counter-independently of the counter value. For the PDA, we can simulate this behavior with three transitions: On reading s and if the top element of the stack is '-', a minus is popped; if the top element is a ' + ', another ' + ' is pushed; and if the stack is empty, also a ' + ' is pushed.
Hence, we have shown that the PDA is at least as powerful as the CA, and it remains to investigate whether both CA and PDA are equivalent, or whether a PDA is stronger. Although it is known that the PDA is actually more powerful, the proof is difficult: There is no pumping lemma for CA's for example such that we can prove that a given context-free language cannot be accepted by a CA. However, of course, if you have tackled this issue, we are eager to know your solution... :-)

2 Push Down Automaton

a) The PDA first reads all a from the input until it reads a b. For each a it reads, it pushes an a on the stack. Then, the PDA reads all b from the input until there comes an a. Again, for each b on the input, it pushes a b on the stack. Then, the automaton reads a from the input, but only if it can pop a b from the stack. Finally, it reads b from the input as long as it can pop an a from the stack.

b) This PDA should recognize all palindromes. However, we don't know where the middle of the word to recognize is. Therefore, we have to construct a non-deterministic automaton that decides itself when the middle has been reached.

Note that we need to support words of even and odd length. Words of even length have a counter-part for each letter. However, the center letter of an odd word has no counterpart.

c) Consider the word w to be an array of symbols. If $w \in L$, there is at least one offset c, such that $w[c] \neq w[|w|-c]$. That is, there are two symbols x and y in w s.t. $x \neq y$ and the distance of x from the start of w equals the distance of y from the end of w.
The PDA reads $c-1$ symbols, and stores a token α on the stack for each read symbol. Then, it reads the c-th symbol, and puts the symbol onto the stack. Afterwards, the PDA allows to read arbitrarily many symbols from the input, and does not modify the stack. Then, when only c symbols are left on the input stream, the PDA requires that the symbol on the stack must differ to the one on the input. Finally, the PDA reads the remaining $c-1$ symbols and accepts if the stack is empty.

Note that this is again a non-deterministic PDA, as we do not know the value of c.

3 Context Free Grammars

a) If x is not a permutation of y, then x and y contain a different number of a or b.

$$
\begin{aligned}
S & \rightarrow D \quad x \text { and } y \text { differ in number of } a \\
& \rightarrow E \quad x \text { and } y \text { differ in number of } b \\
D & \rightarrow B a D a B|B a C \# B| B \# C a B \\
E & \rightarrow A b E b A|A b C \# A| A \# C b A \\
B & \rightarrow b B \mid \epsilon \\
A & \rightarrow a A \mid \epsilon \\
C & \rightarrow a C|b C| \epsilon
\end{aligned}
$$

b) We can distinguish 2 cases: either $|x| \neq|y|$ or there is an offset i, such that $x[i] \neq y[i]$, thinking of x and y as arrays.

$$
S \quad \rightarrow \quad E \quad|x| \neq|y|
$$

$$
\begin{array}{rlll}
& \rightarrow A a C \quad|x|=|y| \text { and } \exists i: x[i]=b \text { and } y[i]=a \\
& \rightarrow B b C \quad|x|=|y| \text { and } \exists i: x[i]=a \text { and } y[i]=b \\
E & \rightarrow D E D & \\
& \rightarrow & \# D C & \text { right side is longer } \\
& \rightarrow D C \# & \text { left side is longer } \\
D & \rightarrow a \mid b & (a \mid b) \\
C & \rightarrow & D C \mid \epsilon \quad(a \mid b)^{*} \\
A & \rightarrow & D A D \mid b C \# \\
B & \rightarrow D B D \mid a C \#
\end{array}
$$

Note that for the case $|x|=|y|$, we did not enforce that the two strings have equal length. But for the case they have equal length, they differ. (Thus, this grammar is ambiguous.)

4 Tandem Pumping

a) Use the tandem pumping lemma to show that the language is not context free. For example, consider the word $w=a^{p} b^{p+1} c^{p+2}$. Clearly, $w \in L$. The tandem pumping lemma requires that w can be written as $w=u v x y z$ with $|v y| \geq 1$ and $|v x y| \leq p$. For context free languages, it must hold that $u v^{i} x y^{i} z \in L \forall i \geq 0$.
The window $v x y$ can be applied at several locations on w. If it entirely covers the a region, then either v or y is at least one a. Therefore, pumping v and y increases the number of a in the resulting word, which violates the language definition.
If the window $v x y$ starts in the area of the a 's and ends in the area of b 's, then v or y contains at least an a or a b. Again, pumping v and y increases the amount of this symbol, which results in a string not contained in the language. Similarly, if $v x y$ only covers the b region, v or y contains at least one b, which produces strings not in L while pumping.
If the window $v x y$ starts in the b area and ends in the c area, we have several cases: a) If either v or y contains both b and c, pumping w produces words not in L. If $v \in b^{+}$and $y=\epsilon$, pumping will produce words with too many b 's. If $v \in b^{+}$and $y \in c^{+}$, or if $v=\epsilon$ and $y \in c^{+}$, we set i to 0 to obtain an string not in L.
If the window $v x y$ entirely covers the c region, then v or y contains at least one c. Thus, setting i to 0 removes at least one c, and the resulting string contains not enough c 's to be in L.
b) This language is regular, see Figure 1. Because the set of regular languages is a subset of the context-free languages, the language is also context-free.

Figure 1: DFA for $L=\left\{x \mid x \in\{0,1\}^{*}\right.$, and x contains an even number of ' 0 ' and an even number of '1'\}
c) Consider the word $w=0^{p} 1^{p} \# 0^{p} 1^{p} \in L$. If the language is context free, we can apply the tandem pumping lemma. In order to keep the property that $|x|=|y|$, we must pump the
same number of symbols on the left and right of \#. Thus, the only reasonable place to place the sub-string $v x y$ is such that v lies to the left of $\#$ and y to the right of $\#$. But because $|v x y| \leq p, v$ only contains 1 and y only contains 0 . Therefore, for any string that we may pump (except for $i=1$), the number of '0's x does not equal the number of '0's in y (and similarly for the number of ' 1 's.) Therefore, the LHS and RHS of \# are not permutations and the pumped strings are not in L. Thus, L is not context free.

5 Transducer and Turing Machine

a) The proposed automaton (which is deterministic!) reads two successive symbols (bits) of the input and outputs the sum. If there is a carry-over, we end up in state $q 3$, where the output is adapted accordingly.

b) The machine performs the following actions:

1 Move the head to the LSB of b. For convenience of explanation, assume there is a variable i, initially set to 0 . After this step, the TM head points to $b[i]$.
2 Replace the digit at the head with A or B, if the digit is a 0 or a 1 , respectively. (That's how we store the value of digit $b[i]$ and can find back later on.)
3 Move to the left until we find the + sign. Then, continue moving left until we hit the first digit. (Note: this digit corresponds to $a[i]$). Depending on the value of this digit, go into state $q 5$ or $q 6$, and remove the digit $a[i]$, by writing a \square.
4 Move right until we hit an A or B (or C, which we explain later). At that point, we have the information of $a[i]$ and $b[i]$ and can determine the sum. If $a[i]+b[i] \geq 2$ (we get a reminder), go to state $q 7$. (Note that $q 1$ corresponds to $q 7$: we're in $q 7$ if there is a reminder, otherwise we're in $q 1$.)
(5) Now, we're done with the digit at offset i. Increment i by one. (This is no action of the TM, it is only for the sake of explanation.)

6 Continue until we're in $q 1$ or $q 7$ and read a + sign, in which case we write the current reminder and terminate (accept).
6' Some more explanation to $q 7$: In this state, we have a carry-over from the previous sum. Thus, $b[i]$ plus this carry over may already sum up to 2 , in which case we write a C on the tape.

We use the following notation for transitions: $\alpha \rightarrow \beta \mid \gamma$: read α from the tape at the current position, then write a β and finally move left if $\gamma=L$ or move right if $\gamma=R$. We abbreviate transitions of the form $\alpha \rightarrow \alpha \mid \gamma$ and write $\alpha \mid \gamma$ (these transitions do not modify the content of the tape).

c) The proposed Turing machine decrements the value of a until $a=0$. In each step, it adds a ' 1 ' to the output:

1 Move the TM head to the right of a and place a $\$$ sign. We will use this marker to return to the $L S B$ of a.
2 Look at the LSB of a. If it is ' 1 ', we change it to 0 (transition between $q 1$ and $q 3$) and move to the right. Then, we continue moving to the right until we hit a \square, which is changed to a ' 1 ' (transition $q 4$ to $q 5$). Finally, we move back to the LSB of a.
3 If the LSB of a is 0 , we search for the first ' 1 ' in a from the right (loop on $q 1$ and transition from $q 1$ to $q 3$).
3.1 If we find a ' 1 ', we change it to ' 0 '. While moving back to the $\$$ symbol, we change all ' 0 ' to ' 1 ' (self-loop on $q 3$). Then, we proceed as in point 2 after passing the $\$$ symbol.
3.2 If we don't find a ' 1 ' in a at all (transition $q 2$ to $q 6$), we start the cleanup procedure: Remove all 0 on the right of the $\$$ symbol, and finally remove the $\$$ symbol itself and move to the right of u.

