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Where are we?

• SDL and MSC

• Petri Nets
– Notation

– Behavioral Properties

• Symbolic Analysis methods of finite models

• Timed automata (real-time)
– Notation

– Semantics

– Analysis

• Introduction to model checking ?

�
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Petri nets – Motivation

• Invented by Carl Adam Petri in 1962 in his thesis “Kommunikation

mit Automaten”

• In contrast to finite state machines, state transitions in Petri nets 

are executed asynchronously, but one at a time (DES).

– The execution order of transitions is partly uncoordinated; it is 

specified by a partial order. 

• Many flavors of Petri nets are in use, e.g. 

– PN with inhibitor arcs

– Colored PN

– PN extended with execution delays

• Timed PN ↔ Timed Automata

• Stochastic PN ↔ Markov chains
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• A Petri net is a bipartite, directed graph defined by a tuple

(S, T, F, M
0
), where

– S is a set of places pi

– T is a set of transitions ti

– F is a set of edges (flow relations) fi
or connection relation:

• Pre set of t
i
: ∙t

i
:= {p

l
| (p

l
, t

i
) ∈ C}

• Post set of t
i
: t

i
∙ := {p

l
| (t

i
,p

l
) ∈ C} 

• analogously we can define pre- and

post sets for each place p
i

– M
0

: S → N
0
; the initial marking: number of tokens for each place

Petri net – Definition

p1 p3

p5 p4

p2

t1 t2
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• Each place p
i
is marked with a certain 

number of tokens

• M(s) denotes the marking of a place s

• The distribution of tokens on places defines 

the state of a PN, which can be described as 

a vector of size |S|

• The initial distribution of the tokens is given 

by the initial state/marking often denoted 

or M
0

• The dynamics of a Petri net is defined by 

token game

Token marking

1

2

t1
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Token game of Petri nets

• A marking M enables a transition t
i
∈ T if all pk ∈ ∙P

i 
contain at least 

one token. We write M[> t
i
.

• If a transition t is activated by M, it eventually fires 

– When a transition fires, it

• consumes a token from each p
i
∈ ∙t

i
(input place)

• adds a token to each p
i
∈ t

i
∙ (output place)   

– The firing gives one a state transition M[>t
i
M’ with the new marking M’

– The successive firing of all at a time enabled transitions, one at a time, 
allows one to visit sets of states

• states reached on firing sequences of transitions are denoted as reachable

• If the set of all reachable states ([M
0
> ) is finite, one speaks of a finite PN

3 4

1 2

t1

3 4

1 2

t1
t1 fires
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Token game of PNs

Demo:

http://www.cs.adelaide.edu.au/~esser/browser.html
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Non-Deterministic Evolution

• Any activated transactions might fire

3 4

1 2

t1t2

3 4

1 2

t1t2

3 4

1 2

t1t2

t2 t1

• Interleaving semantics: enabled transitions are executed 

sequentially (unfolding all possible execution sequences)
=> generates all possible behaviors 
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Co-operation, competition and concurrency

• PNs allow to model many-fold situations such as

decision / conflict

fork join / synchronization
sequences

concurrency
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Basic types of PN (arc weights = 1)

• State machine (SM): A PN P is denoted as SM 

iff ∀ t ∈ T: |∙t| = |t∙| ≤ 1

• Marked Graph (MG):A PN is denoted as MG

iff ∀ p ∈ P: |∙p| = |p∙| ≤ 1

t1
t1

P1 P1
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Basic types of PN (arc weights = 1)

• Free Choice net (FC-net): A PN is denoted as FC-net

iff ∀ p,p’ ∈ P: p ≠ p’ ⇒ p∙ ⋂ p’∙ ≠ ∅ ⇒ |p∙| = |p’∙| ≤ 1

For these simple classes many questions are 

decidable, e.g. can we reach a specific marking, etc.
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A first extension: weighted edges

• Associating weights to edges:

– Each edge fk has an associated weight W(fk) (defaults to 1)

– A transition t
i
is active if each place pj ∈ ∙P

i
contains at least W(f

k
) 

tokens.

H
2

O
2

Reaction

2 H
2

+ O
2

→ 2H
2
O

2

2

H
2
O

H
2

O
2

2

2

H
2
O
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Token game in case of weighted edges

• A marking M activates a transition t
i
∈ T if each place p

k
∈ ∙P

i 
contains 

enough tokens: 

• When a transition t
i
∈ T fires, it

– adds tokens to output places  (1)

– consumes tokens from input place (2)

t1 t1
t1 fires

2

5

Remark:

m(pj)’ is the next value, i.e. 

the next marking of place p
i
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Properties

• Reachability :A marking M’ is reachable ⇔ there exists a sequence of 
transitions {t

10
, t

5
, … t

k
} the seq. execution of which delivers M’

M
n

= (…((M
0

[>  t
10

) [> t
5
),…, [>t

J
)

Decidable (exponential space and time) for standard PNs only)

• K-Bounded: A Petri net (N, M
0
) is K-bounded ⇔ ∀ m ∈ [M

0
> :

m(p) ≤ K (finite PNs are trivially k-bounded & vice-versa).

• Safety: 1-Boundedness (every node holds ≤ 1 token (always)

• Liveness: A PN is (strongly) live iff for any reachable state all transitions can 
be eventually fired.

• Deadlock-free: A PN is deadlock-free or weakly live iff for each of its 
reachable states at least one transition is enabled.

These questions are solely decidable for standard PNs only !
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Analysis Methods

1. Analytic methods (smart methods), e.g. based on linear algebra:
solution of a system of linear equation is a necessary condition for 
reachability; only applicable for basic types of PNs, since PNs with 
more than 2 inhibitor arcs have Turing-power => most questions 
(deadlock-freeness, etc. ) not decidable anymore.

2. Methods based on state space exploration (brute-force):

1. State Space exploration for finite PNs:
Enumeration of all reachable markings.

2. Simulation for finite and in-finite PNs:
Play token game by solely executing one of the enabled transitions 
(gives single trace of possible executions (= run))

3. State Space exploration of infinite PNs (Coverability tree):
Enumeration of all classes of reachable markings
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Method 1: Incidence Matrix

• Goal: Describe a Petri net through equations

• The incidence matrix A describes the token-flow according for the 

different transitions

• Aij = gain of tokens at node i when transition j fires

• A marking M is written as a m × 1 column vector

1

t2

2

t3

3

4

t1

2

2

2
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Method 1: State Equation

• The firing vector ui describes the firing of 

transition i. It consists of all ‘0’, except for the 

i-th position, where it has a ‘1’.

E.g. 

• A transition t from Mk to Mk+1 is written as 

Mk+1 = Mk + A · ui

M
1

is obtained from M
0

by firing t3

1

t2

2

t3

3

4

t1

2

2

2
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Method 1:  Condition for reachability

• A marking M
k

is reachable from M
0

if there is a 

sequence of transitions {t1, t2, …, tk} such that 
M

k
= M

0
· t1 · t2 · … · tk.

• Expressed with the incidence matrix:

which can be rewritten as

If M
k

is reachable from M
0
, equation (2) must 

have a solution where all components of 

are positive integers.

(This is a necessary, but not sufficient condition for reachability.)

1

t2

2

t3

3

4

t1

2

2

2

(1)

(2)

∑
=

⋅+=
k
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i0k
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xAΔMMM
0k

r⋅==−
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Method 2: State Space Exploration (finite PN)

• If the set of reachable states is finite, one may execute each 

enabled transition for each marking of the net.

• Starting with the initial marking M
0

and until a fixed point is reached 

gives one the set of all reachable states and the transitions among 

them (details on reachability algorithms will follow).

a b

P
1

P
2

P
3

P
4

(0,1,1,0) (1,0,0,1)

(0,1,0,1)

b

b

a

a

(1,0,1,0)

execute SG exploration

The model
The SG
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Labelled transition system

A labelled transition system (LTS) is tuple where

is the set of reachable states (markings of the PN)

is the set of initial states (the initial marking M
0

of the PN)

is the set of activity/action labels (transition identifier of the PN)

is a transition relation

Via state space exploration each finite PN can be mapped to 

its (underlying) transition system, also often denoted as state 

graph (SG).

What does set of reachable states means?

The set of reachable states is the set of those markings of a PN, which can 

be obtained by executing all enabled (activated transitions) within each state, 

starting from the initial marking M
0
. In the following we will denote such sets 

with respect to a model M.
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Method 2: State Space Exploration (finite PN)

Properties to be directly answered on the level of the finite SG:

– Does the model has finite executions only (termination)?

– Is the model deadlock-free?

– Is the model alive, i.e. each path contains every transition? 

(strongly connected component with all transition labels included)

– Is the model weakly alive: each transition occurs within the SG.

– Is the model reversible, i.e. from every reachable marking there is a 

way back to the initial state.

– Is m(p
i
) of a place p

i
bounded?
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Method 3: Coverability Tree/Graph (CG) (non-finite PNs)

• A PN can be infinite, i.e. its set of reachable states is un-bounded.

What can we do?

• Detect & handle infinite cycles (CG is not unique)

• What kind of questions can we answer?

– is the PN finite ?

– which are the bounded/un-bounded places

– is there a marking reachable s.t. t
i
is enabled?

2

t3

t2

1

3

t1

t0

M
0

= [1 0 0]

M
1

= [0 0 1]

t1 t3

M
3

= [1 ω 0]

M
4

= [0 ω 1]

t2

M
5

= [0 ω 1]

t1 t3

M
6

= [1 ω 0]

deadend

old

old

ω denotes an 

arbitrary number 

of tokens
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Coverability Graph – the Algorithm

Special symbol ω, similar to ∞: ∀n∈N: ω > n; ω = ω + n; ω ≥ ω

• Label initial marking M
0

as root and tag it as new

• while new markings exist, pick one, say M

1. If M is identical to a marking on the way from the root to M, mark it as 
old; continue;

2. If no transitions are enabled at M, tag it as deadend;

3. For each enabled transition t at M do

a) Obtain marking M’ = M[>t

b) If there exists a marking M’’ on the way from the root to M s.t. 
M’(p) ≥ M’’(p) for each place p and M’ ≠ M’’, replace M’(p) with ω
for p where M’(p) > M’’(p).

c) Introduce M’ as a node, draw an arc with label t from M to M’ and 

tag M’ new.
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Results from the Coverability Tree T

• The net is bounded iff ω does not appear in any node label of T

• The net is safe iff only ‘0’ and ‘1’ appear in the node labels of T

• A transition t is dead iff it does not appear as an arc in T

• If M is reachable from M
0
, then there exists a node M’ s.t. M ≤ M’. 

(This is a necessary, but not sufficient condition for reachability.)

• For bounded Petri nets, this tree is also called reachability tree, as 

all reachable markings are contained in it.
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Compositionality

• When it comes to the modelling of complex systems, PN tend to 

become very large and unclear.

• Concepts developed in the context of Process Algebra have been 

taken over in the world of PN.

• This allows to construct PNs in a compositional manner, where we 

will only roughly touch:

– Composition via sharing of places

– Composition via synchronization

Remark: 

As it turns out, compositionality can also often be exploited when 

analysing high-level models.
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Synchronisation

• Dedicated activities have to be executed jointly:

• We have the following rules (modus ponens) on the level of LTS (labelled 

transition systems)

– Synchronizing activities:

– Non-synchronizing activities
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Synchronisation (example)

α α

Submodel 1: Submodel 2:

β
1

β
2

α

Combined model

β
1

β
2

For PNs

synchronization 

can be realized by 

merging effected 

transitions;

α: synchronizing transition

β: non-synchronizing transition Remark:

Cross-product 

computation can also 

be executed on the 

level of local state 

graphs
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Sharing of places (variables)

• Dedicated places have to hold same number of tokens:

where for holds

Submodel 1: Submodel 2:

βα
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Common Extensions

• Colored Petri nets: Tokens carry values (colors)
Any Petri net with finite number of colors can 

be transformed into a regular Petri net.

• Continuous Petri nets: The number of tokens can be real.

Cannot be transformed to a regular Petri net

• Inhibitor Arcs: Enable a transition if a place contains no tokens

Cannot be transformed to a regular Petri net, as soon as we have more 

than 2 inhibitor arcs (for 2 inhibitor arcs this depends on the structure of 

the PN)

ε ε ε

a b c

Final 

place
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Analysis of finite high-level models

• Common high-level model description techniques have Turing-power => 

most questions are not decidable.

• If a dynamic model, e.g. a PN, is bounded or finite one may generate its 

underlying reachability graph, also commonly denoted as state graph (SG). 

Its inspection may answer the questions of interest such as deadlock-

freeness, liveness, …

• In the following we will discuss two techniques for analyzing such systems

– Standard approach: Reachability analysis, based on hash table

– Symbolic approaches:

Reachability analysis, based on “symbolic” data structures
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Standard reachability analysis technique

1) Stack := ø, HashTable := ø s
0

:= initialState

2) push(s
0

, Stack)

3) insert(s
0

, HashTable)

4) Call DFS()

5) Function DFS()

6) While (Stack != ø) 

7) S := pop(Stack)

8) Forall succ s’ of s do

9) If (s’ HashTable)

10) push(s’ , Stack)

11) insert(s’ , HashTable)

12) endif

13) od

14) endwhile

15) endfunction
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Computer-assisted validation

What’s the obstacle?
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State Space Explosion

Interleaving semantics gives that the number of states grows 

exponential with the number of independent transitions and or with the 

number of tokens (concurrent processes).

a b

P
1

P
2

P
3

P
4

(0,1,1,0) (1,0,0,1)

(0,1,0,1)

b

b

a

a

(1,0,1,0)

execute SG exploration

The model
The SG
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Symbolic techniques

In the following we will have a look on so called symbolic 

techniques for the analysis of finite systems:

1. Techniques based on Binary Decision Diagrams

2. SAT-Solvers for k-bounded transition systems
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Binary Decision Diagrams

• A Binary Decision Diagram (BDD) is a directed non-

cyclic graph for representing Boolean functions ({1,0}n

→ {0,1}).

• Thus they can be used for encoding sets and transition 

relations, i.e. a BDD may represent a characteristic 
function of a set S
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Reduced ordered Binary Decision Diagram

o p q

1 1 0 0 0 0 0 0

n

k l

r

� dashed line else- or 0-successor: else(n) = l

� solid line then- or 1-successor: then(n) = k
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Reduced ordered Binary Decision Diagram
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Reduced ordered Binary Decision Diagram

a

b

c

1 0

Merge redundant terminal nodes !

o p q

1 1 0 0 0 0 0 0

a

b

c

n

k l

r

rqpo
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Reduced ordered Binary Decision Diagram

Merge redundant non-terminal nodes !

a

b

c

1 0

rqpo

a

b

c

1 0

rqpo
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Reduced ordered Binary Decision Diagram

Merge redundant non-terminal nodes !

a

b

c

1 0

rqpo

a

b

c

1 0

o q
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Reduced ordered Binary Decision Diagram

Eliminate don’t-care nodes,

re-direct incoming arcs to successor

a

b

c

1 0

o q

a

b

c

1 0

o q

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/82

Shannon-Expansion

A RO-BDD is a graph-based representation 

of a Boolean function, its interpretation is 

based on the Shannon-expansion:

a

b

1 0

rooted in 0-succ of root node
rooted in 1-succ of root node
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Shannon-Expansion

A RO-BDD is a graph-based representation 

of a Boolean function, its interpretation is 

based on the Shannon-expansion:

a

b

1 0

Remove terms which 

evaluates to 0.
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Operations on RO-BDDs: The Apply algorithm (1)

A binary operator can be applied to two BDDs by 

making use of Bryant’s recursive Apply-algorithm: 
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Operations on RO-BDDs: The Apply algorithm (2)
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Operations on RO-BDDs: The Apply algorithm (3)
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Binary Decision Diagrams

• BDDs can be used for encoding sets and transition 

relations, i.e. a BDD may represent a characteristic 
function of a set S or a transition relation T

a

1 0

1

a

b

1 0

DNC-nodes kept solely for illustration purpose!

FSM M

Symbolic rep. of M’s set 

of reachable states
Symbolic rep. of M’s 

transition relation

A detailed example on BDDs

and finite PNs will follow in the 

exercise class!
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Standard Symbolic Reachability Analysis (bfs)

The Abstract algorithm delivers 

• the existential-quantification for +,

• and the all-quantification for *

• with respect to a set of variables

The operation a ← b re-labels each 

occurrence of variable a with 

variable b, can be applied to set of 

variables (interleaved orderings!).

How-can we check now for a deadlock?
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How-to exploit compositionality, when using BDDs?

• Synchronization of activities:

• Sharing of variables 
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Common Extensions of BDDs

• Multi-terminal BDDs: Terminal nodes hold values from a finite 

domain (pseudo-boolean functions)

• Zero-suppressed (MT) BDDs: Instead of dnc-nodes one eliminates 

nodes the out-going 1-one edge of which leads to the 0-sink.

• Multi-valued DD: Nodes contain set of numbers an have mor than 2-

successors only

• ……………………………….
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Outlook: From BDDs to SAT-solvers

• State-of-the-art

– State machines, i.e. their transition relation (TR)  can be represented by 
Binary Decision Diagram (= directed, acyclic graph for rep. Boolean 
functions)

• complex procedures for deriving BDD from high-level model 

description

• BDD encodes one-step TR, two sets of boolean variables:

– x-variables holding source states

– y-variabels for holding target states t

Depending on the modelled system BDD may explode in the number of 
allocated nodes (add-function y := x + p)

• New trends: SAT-Solvers have shown to be of value in such cases
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SAT-Solvers at glance (1)

• Satisfiability: Does there exists an assignment to the variables of a 

formula α of propositional logics, so that the formula evaluates to true

• 3-SAT: In general this problem is NP-complete (Cook 1972) 

=> One may not expect always efficient computations. But in practice 

SAT-solver have shown to be very powerful, outperform BDDs

• Employing SAT-based MC:

– Encode TR as boolean formula (unfolding of loops, each step in TR 

is encoded by a new set of variables, k-steps within TR?

– Encode properties to be checked as boolean equation

– Check if the obtained overall formula is satisfiable
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