
Discrete Event Systems – R. Wattenhofer / K. Lampka 3/41

Where are we?

• SDL and MSC

• Petri Nets
– Notation

– Behavioral Properties

• Symbolic Analysis methods of finite models

• Timed automata (real-time)
– Notation

– Semantics

– Analysis

• Introduction to model checking ?

�

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/42

Petri nets – Motivation

• Invented by Carl Adam Petri in 1962 in his thesis “Kommunikation

mit Automaten”

• In contrast to finite state machines, state transitions in Petri nets

are executed asynchronously, but one at a time (DES).

– The execution order of transitions is partly uncoordinated; it is

specified by a partial order.

• Many flavors of Petri nets are in use, e.g.

– PN with inhibitor arcs

– Colored PN

– PN extended with execution delays

• Timed PN ↔ Timed Automata

• Stochastic PN ↔ Markov chains

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/43

• A Petri net is a bipartite, directed graph defined by a tuple

(S, T, F, M
0
), where

– S is a set of places pi

– T is a set of transitions ti

– F is a set of edges (flow relations) fi
or connection relation:

• Pre set of t
i
: ∙t

i
:= {p

l
| (p

l
, t

i
) ∈ C}

• Post set of t
i
: t

i
∙ := {p

l
| (t

i
,p

l
) ∈ C}

• analogously we can define pre- and

post sets for each place p
i

– M
0

: S → N
0
; the initial marking: number of tokens for each place

Petri net – Definition

p1 p3

p5 p4

p2

t1 t2

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/44

• Each place p
i
is marked with a certain

number of tokens

• M(s) denotes the marking of a place s

• The distribution of tokens on places defines

the state of a PN, which can be described as

a vector of size |S|

• The initial distribution of the tokens is given

by the initial state/marking often denoted

or M
0

• The dynamics of a Petri net is defined by

token game

Token marking

1

2

t1

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/45

Token game of Petri nets

• A marking M enables a transition t
i
∈ T if all pk ∈ ∙P

i
contain at least

one token. We write M[> t
i
.

• If a transition t is activated by M, it eventually fires

– When a transition fires, it

• consumes a token from each p
i
∈ ∙t

i
(input place)

• adds a token to each p
i
∈ t

i
∙ (output place)

– The firing gives one a state transition M[>t
i
M’ with the new marking M’

– The successive firing of all at a time enabled transitions, one at a time,
allows one to visit sets of states

• states reached on firing sequences of transitions are denoted as reachable

• If the set of all reachable states ([M
0
>) is finite, one speaks of a finite PN

3 4

1 2

t1

3 4

1 2

t1
t1 fires

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/46

Token game of PNs

Demo:

http://www.cs.adelaide.edu.au/~esser/browser.html

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/47

Non-Deterministic Evolution

• Any activated transactions might fire

3 4

1 2

t1t2

3 4

1 2

t1t2

3 4

1 2

t1t2

t2 t1

• Interleaving semantics: enabled transitions are executed

sequentially (unfolding all possible execution sequences)
=> generates all possible behaviors

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/48

Co-operation, competition and concurrency

• PNs allow to model many-fold situations such as

decision / conflict

fork join / synchronization
sequences

concurrency

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/49

Basic types of PN (arc weights = 1)

• State machine (SM): A PN P is denoted as SM

iff ∀ t ∈ T: |∙t| = |t∙| ≤ 1

• Marked Graph (MG):A PN is denoted as MG

iff ∀ p ∈ P: |∙p| = |p∙| ≤ 1

t1
t1

P1 P1

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/50

Basic types of PN (arc weights = 1)

• Free Choice net (FC-net): A PN is denoted as FC-net

iff ∀ p,p’ ∈ P: p ≠ p’ ⇒ p∙ ⋂ p’∙ ≠ ∅ ⇒ |p∙| = |p’∙| ≤ 1

For these simple classes many questions are

decidable, e.g. can we reach a specific marking, etc.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/51

A first extension: weighted edges

• Associating weights to edges:

– Each edge fk has an associated weight W(fk) (defaults to 1)

– A transition t
i
is active if each place pj ∈ ∙P

i
contains at least W(f

k
)

tokens.

H
2

O
2

Reaction

2 H
2

+ O
2

→ 2H
2
O

2

2

H
2
O

H
2

O
2

2

2

H
2
O

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/52

Token game in case of weighted edges

• A marking M activates a transition t
i
∈ T if each place p

k
∈ ∙P

i
contains

enough tokens:

• When a transition t
i
∈ T fires, it

– adds tokens to output places (1)

– consumes tokens from input place (2)

t1 t1
t1 fires

2

5

Remark:

m(pj)’ is the next value, i.e.

the next marking of place p
i

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/53

Properties

• Reachability :A marking M’ is reachable ⇔ there exists a sequence of
transitions {t

10
, t

5
, … t

k
} the seq. execution of which delivers M’

M
n

= (…((M
0

[> t
10

) [> t
5
),…, [>t

J
)

Decidable (exponential space and time) for standard PNs only)

• K-Bounded: A Petri net (N, M
0
) is K-bounded ⇔ ∀ m ∈ [M

0
> :

m(p) ≤ K (finite PNs are trivially k-bounded & vice-versa).

• Safety: 1-Boundedness (every node holds ≤ 1 token (always)

• Liveness: A PN is (strongly) live iff for any reachable state all transitions can
be eventually fired.

• Deadlock-free: A PN is deadlock-free or weakly live iff for each of its
reachable states at least one transition is enabled.

These questions are solely decidable for standard PNs only !

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/54

Analysis Methods

1. Analytic methods (smart methods), e.g. based on linear algebra:
solution of a system of linear equation is a necessary condition for
reachability; only applicable for basic types of PNs, since PNs with
more than 2 inhibitor arcs have Turing-power => most questions
(deadlock-freeness, etc.) not decidable anymore.

2. Methods based on state space exploration (brute-force):

1. State Space exploration for finite PNs:
Enumeration of all reachable markings.

2. Simulation for finite and in-finite PNs:
Play token game by solely executing one of the enabled transitions
(gives single trace of possible executions (= run))

3. State Space exploration of infinite PNs (Coverability tree):
Enumeration of all classes of reachable markings

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/55

Method 1: Incidence Matrix

• Goal: Describe a Petri net through equations

• The incidence matrix A describes the token-flow according for the

different transitions

• Aij = gain of tokens at node i when transition j fires

• A marking M is written as a m × 1 column vector

1

t2

2

t3

3

4

t1

2

2

2

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/56

Method 1: State Equation

• The firing vector ui describes the firing of

transition i. It consists of all ‘0’, except for the

i-th position, where it has a ‘1’.

E.g.

• A transition t from Mk to Mk+1 is written as

Mk+1 = Mk + A · ui

M
1

is obtained from M
0

by firing t3

1

t2

2

t3

3

4

t1

2

2

2

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/57

Method 1: Condition for reachability

• A marking M
k

is reachable from M
0

if there is a

sequence of transitions {t1, t2, …, tk} such that
M

k
= M

0
· t1 · t2 · … · tk.

• Expressed with the incidence matrix:

which can be rewritten as

If M
k

is reachable from M
0
, equation (2) must

have a solution where all components of

are positive integers.

(This is a necessary, but not sufficient condition for reachability.)

1

t2

2

t3

3

4

t1

2

2

2

(1)

(2)

∑
=

⋅+=
k

1i

i0k
uAMM

xAΔMMM
0k

r⋅==−

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/58

Method 2: State Space Exploration (finite PN)

• If the set of reachable states is finite, one may execute each

enabled transition for each marking of the net.

• Starting with the initial marking M
0

and until a fixed point is reached

gives one the set of all reachable states and the transitions among

them (details on reachability algorithms will follow).

a b

P
1

P
2

P
3

P
4

(0,1,1,0) (1,0,0,1)

(0,1,0,1)

b

b

a

a

(1,0,1,0)

execute SG exploration

The model
The SG

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/59

Labelled transition system

A labelled transition system (LTS) is tuple where

is the set of reachable states (markings of the PN)

is the set of initial states (the initial marking M
0

of the PN)

is the set of activity/action labels (transition identifier of the PN)

is a transition relation

Via state space exploration each finite PN can be mapped to

its (underlying) transition system, also often denoted as state

graph (SG).

What does set of reachable states means?

The set of reachable states is the set of those markings of a PN, which can

be obtained by executing all enabled (activated transitions) within each state,

starting from the initial marking M
0
. In the following we will denote such sets

with respect to a model M.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/60

Method 2: State Space Exploration (finite PN)

Properties to be directly answered on the level of the finite SG:

– Does the model has finite executions only (termination)?

– Is the model deadlock-free?

– Is the model alive, i.e. each path contains every transition?

(strongly connected component with all transition labels included)

– Is the model weakly alive: each transition occurs within the SG.

– Is the model reversible, i.e. from every reachable marking there is a

way back to the initial state.

– Is m(p
i
) of a place p

i
bounded?

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/61

Method 3: Coverability Tree/Graph (CG) (non-finite PNs)

• A PN can be infinite, i.e. its set of reachable states is un-bounded.

What can we do?

• Detect & handle infinite cycles (CG is not unique)

• What kind of questions can we answer?

– is the PN finite ?

– which are the bounded/un-bounded places

– is there a marking reachable s.t. t
i
is enabled?

2

t3

t2

1

3

t1

t0

M
0

= [1 0 0]

M
1

= [0 0 1]

t1 t3

M
3

= [1 ω 0]

M
4

= [0 ω 1]

t2

M
5

= [0 ω 1]

t1 t3

M
6

= [1 ω 0]

deadend

old

old

ω denotes an

arbitrary number

of tokens

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/62

Coverability Graph – the Algorithm

Special symbol ω, similar to ∞: ∀n∈N: ω > n; ω = ω + n; ω ≥ ω

• Label initial marking M
0

as root and tag it as new

• while new markings exist, pick one, say M

1. If M is identical to a marking on the way from the root to M, mark it as
old; continue;

2. If no transitions are enabled at M, tag it as deadend;

3. For each enabled transition t at M do

a) Obtain marking M’ = M[>t

b) If there exists a marking M’’ on the way from the root to M s.t.
M’(p) ≥ M’’(p) for each place p and M’ ≠ M’’, replace M’(p) with ω
for p where M’(p) > M’’(p).

c) Introduce M’ as a node, draw an arc with label t from M to M’ and

tag M’ new.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/63

Results from the Coverability Tree T

• The net is bounded iff ω does not appear in any node label of T

• The net is safe iff only ‘0’ and ‘1’ appear in the node labels of T

• A transition t is dead iff it does not appear as an arc in T

• If M is reachable from M
0
, then there exists a node M’ s.t. M ≤ M’.

(This is a necessary, but not sufficient condition for reachability.)

• For bounded Petri nets, this tree is also called reachability tree, as

all reachable markings are contained in it.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/64

Compositionality

• When it comes to the modelling of complex systems, PN tend to

become very large and unclear.

• Concepts developed in the context of Process Algebra have been

taken over in the world of PN.

• This allows to construct PNs in a compositional manner, where we

will only roughly touch:

– Composition via sharing of places

– Composition via synchronization

Remark:

As it turns out, compositionality can also often be exploited when

analysing high-level models.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/65

Synchronisation

• Dedicated activities have to be executed jointly:

• We have the following rules (modus ponens) on the level of LTS (labelled

transition systems)

– Synchronizing activities:

– Non-synchronizing activities

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/66

Synchronisation (example)

α α

Submodel 1: Submodel 2:

β
1

β
2

α

Combined model

β
1

β
2

For PNs

synchronization

can be realized by

merging effected

transitions;

α: synchronizing transition

β: non-synchronizing transition Remark:

Cross-product

computation can also

be executed on the

level of local state

graphs

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/67

Sharing of places (variables)

• Dedicated places have to hold same number of tokens:

where for holds

Submodel 1: Submodel 2:

βα

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/68

Common Extensions

• Colored Petri nets: Tokens carry values (colors)
Any Petri net with finite number of colors can

be transformed into a regular Petri net.

• Continuous Petri nets: The number of tokens can be real.

Cannot be transformed to a regular Petri net

• Inhibitor Arcs: Enable a transition if a place contains no tokens

Cannot be transformed to a regular Petri net, as soon as we have more

than 2 inhibitor arcs (for 2 inhibitor arcs this depends on the structure of

the PN)

ε ε ε

a b c

Final

place

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/69

Literature

• W. Reisig: Petri Netze _ Eine neue EInfuehrung, November 2007,

http://www2.informatik.hu-berlin.de/top/pnene_buch/pnene_buch.pdf

• Falko Bause, P. Kritinger: Stochastic Petri Nets - An Introduction to

the Theory, 2002

http://ls4-www.informatik.uni-dortmund.de/QM/MA/fb/spnbook2.html

• C. Girault, R. Valk: Petri Nets for Systems Engineering -- A Guide to

Modeling, Verification, and Applications 2003

• B. Baumgarten: Petri-Netze -- Grundlagen und Anwendungen. BI

Wissenschaftsverlag, Mannheim, 1990

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/70

Analysis of finite high-level models

• Common high-level model description techniques have Turing-power =>

most questions are not decidable.

• If a dynamic model, e.g. a PN, is bounded or finite one may generate its

underlying reachability graph, also commonly denoted as state graph (SG).

Its inspection may answer the questions of interest such as deadlock-

freeness, liveness, …

• In the following we will discuss two techniques for analyzing such systems

– Standard approach: Reachability analysis, based on hash table

– Symbolic approaches:

Reachability analysis, based on “symbolic” data structures

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/71

Standard reachability analysis technique

1) Stack := ø, HashTable := ø s
0

:= initialState

2) push(s
0

, Stack)

3) insert(s
0

, HashTable)

4) Call DFS()

5) Function DFS()

6) While (Stack != ø)

7) S := pop(Stack)

8) Forall succ s’ of s do

9) If (s’ HashTable)

10) push(s’ , Stack)

11) insert(s’ , HashTable)

12) endif

13) od

14) endwhile

15) endfunction

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/72

Computer-assisted validation

What’s the obstacle?

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/73

State Space Explosion

Interleaving semantics gives that the number of states grows

exponential with the number of independent transitions and or with the

number of tokens (concurrent processes).

a b

P
1

P
2

P
3

P
4

(0,1,1,0) (1,0,0,1)

(0,1,0,1)

b

b

a

a

(1,0,1,0)

execute SG exploration

The model
The SG

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/74

Symbolic techniques

In the following we will have a look on so called symbolic

techniques for the analysis of finite systems:

1. Techniques based on Binary Decision Diagrams

2. SAT-Solvers for k-bounded transition systems

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/75

Binary Decision Diagrams

• A Binary Decision Diagram (BDD) is a directed non-

cyclic graph for representing Boolean functions ({1,0}n

→ {0,1}).

• Thus they can be used for encoding sets and transition

relations, i.e. a BDD may represent a characteristic
function of a set S

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/76

Reduced ordered Binary Decision Diagram

o p q

1 1 0 0 0 0 0 0

n

k l

r

� dashed line else- or 0-successor: else(n) = l

� solid line then- or 1-successor: then(n) = k

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/77

Reduced ordered Binary Decision Diagram

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/78

Reduced ordered Binary Decision Diagram

a

b

c

1 0

Merge redundant terminal nodes !

o p q

1 1 0 0 0 0 0 0

a

b

c

n

k l

r

rqpo

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/79

Reduced ordered Binary Decision Diagram

Merge redundant non-terminal nodes !

a

b

c

1 0

rqpo

a

b

c

1 0

rqpo

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/80

Reduced ordered Binary Decision Diagram

Merge redundant non-terminal nodes !

a

b

c

1 0

rqpo

a

b

c

1 0

o q

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/81

Reduced ordered Binary Decision Diagram

Eliminate don’t-care nodes,

re-direct incoming arcs to successor

a

b

c

1 0

o q

a

b

c

1 0

o q

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/82

Shannon-Expansion

A RO-BDD is a graph-based representation

of a Boolean function, its interpretation is

based on the Shannon-expansion:

a

b

1 0

rooted in 0-succ of root node
rooted in 1-succ of root node

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/83

Shannon-Expansion

A RO-BDD is a graph-based representation

of a Boolean function, its interpretation is

based on the Shannon-expansion:

a

b

1 0

Remove terms which

evaluates to 0.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/84

Operations on RO-BDDs: The Apply algorithm (1)

A binary operator can be applied to two BDDs by

making use of Bryant’s recursive Apply-algorithm:

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/85

Operations on RO-BDDs: The Apply algorithm (2)

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/86

Operations on RO-BDDs: The Apply algorithm (3)

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/87

Binary Decision Diagrams

• BDDs can be used for encoding sets and transition

relations, i.e. a BDD may represent a characteristic
function of a set S or a transition relation T

a

1 0

1

a

b

1 0

DNC-nodes kept solely for illustration purpose!

FSM M

Symbolic rep. of M’s set

of reachable states
Symbolic rep. of M’s

transition relation

A detailed example on BDDs

and finite PNs will follow in the

exercise class!

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/88

Standard Symbolic Reachability Analysis (bfs)

The Abstract algorithm delivers

• the existential-quantification for +,

• and the all-quantification for *

• with respect to a set of variables

The operation a ← b re-labels each

occurrence of variable a with

variable b, can be applied to set of

variables (interleaved orderings!).

How-can we check now for a deadlock?

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/89

How-to exploit compositionality, when using BDDs?

• Synchronization of activities:

• Sharing of variables

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/90

Common Extensions of BDDs

• Multi-terminal BDDs: Terminal nodes hold values from a finite

domain (pseudo-boolean functions)

• Zero-suppressed (MT) BDDs: Instead of dnc-nodes one eliminates

nodes the out-going 1-one edge of which leads to the 0-sink.

• Multi-valued DD: Nodes contain set of numbers an have mor than 2-

successors only

• ……………………………….

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/91

Literature

• Wikipedia: http://en.wikipedia.org/wiki/Binary_Decision_Diagrams

• R.E. Bryant: Graph-based Algorithms for Boolean Function

Manipulation, IEEE Transactions on Computers No. 8, 1986, p. 677-

691.

• Ch. Meinel and Th. Theobald: Algorithms and Data Structures in

VLSI-Design, Springer, 1998
http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_ITS/books/OBDD-Book.pdf

• Ingo Wegener: Branching Programs and Binary Decision Diagrams,

SIAM, 2000.

• T. Sasao and M. Fujita (eds.): Representations of Discrete Functions,

Kluwer Academic Publishers, 1996.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/92

Outlook: From BDDs to SAT-solvers

• State-of-the-art

– State machines, i.e. their transition relation (TR) can be represented by
Binary Decision Diagram (= directed, acyclic graph for rep. Boolean
functions)

• complex procedures for deriving BDD from high-level model

description

• BDD encodes one-step TR, two sets of boolean variables:

– x-variables holding source states

– y-variabels for holding target states t

Depending on the modelled system BDD may explode in the number of
allocated nodes (add-function y := x + p)

• New trends: SAT-Solvers have shown to be of value in such cases

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/93

SAT-Solvers at glance (1)

• Satisfiability: Does there exists an assignment to the variables of a

formula α of propositional logics, so that the formula evaluates to true

• 3-SAT: In general this problem is NP-complete (Cook 1972)

=> One may not expect always efficient computations. But in practice

SAT-solver have shown to be very powerful, outperform BDDs

• Employing SAT-based MC:

– Encode TR as boolean formula (unfolding of loops, each step in TR

is encoded by a new set of variables, k-steps within TR?

– Encode properties to be checked as boolean equation

– Check if the obtained overall formula is satisfiable

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/94

Literature

• Wikipedia: http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

• A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu: Bounded

Model checking, Advances in Computers (Vol. 58), Academic Press

2003, original paper appeared in 1999.

