Where are we? Petri nets – Motivation • SDL and MSC Invented by Carl Adam Petri in 1962 in his thesis "Kommunikation mit Automaten" Petri Nets In contrast to finite state machines, state transitions in Petri nets - Notation are executed asynchronously, but one at a time (DES). - Behavioral Properties - The execution order of transitions is partly uncoordinated; it is specified by a partial order. Symbolic Analysis methods of finite models • Many flavors of Petri nets are in use, e.g. PN with inhibitor arcs Timed automata (real-time) Colored PN Notation PN extended with execution delays - Semantics • Timed PN ↔ Timed Automata - Analysis Stochastic PN ↔ Markov chains Introduction to model checking ? TIK Discrete Event Systems - R. Wattenhofer / K. Lampka 3/41 Discrete Event Systems - R. Wattenhofer / K. Lampka 3/42 Petri net – Definition Token marking A Petri net is a bipartite, directed graph defined by a tuple (S, T, F, M_0) , where • Each place p, is marked with a certain number of tokens - S is a set of places p_i M(s) denotes the marking of a place s - T is a set of transitions t_i • The distribution of tokens on places defines - F is a set of edges (flow relations) f_i the state of a PN, which can be described as or connection relation: a vector of size |S| $C \subset S \times T \cup T \times S$ $\vec{s} := (m(p_1), m(p_1), \dots, m(p_{|S|}))$ • Pre set of $t_i : \bullet t_i := \{p_i \mid (p_i, t_i) \in C\}$ · The initial distribution of the tokens is given • Post set of $t_i : t_i \bullet := \{p_i \mid (t_i, p_i) \in C\}$ by the initial state/marking often denoted \vec{s}^{ϵ} · analogously we can define pre- and or M_o post sets for each place p_i p5 • The dynamics of a Petri net is defined by – $M_0: S \to \mathbb{N}_0$; the initial marking: number of tokens for each place token game Discrete Event Systems - R. Wattenhofer / K. Lampka 3/43 Discrete Event Systems - R. Wattenhofer / K. Lampka 3/44

Token game of Petri nets

Token game of PNs

http://www.cs.adelaide.edu.au/~esser/browser.html

Discrete Event Systems - R. Wattenhofer / K. Lampka

3/46

Co-operation, competition and concurrency

Basic types of PN (arc weights = 1)

• State machine (SM): A PN P is denoted as SM

• Marked Graph (MG): A PN is denoted as MG

TIK Computer Engineering a

Discrete Event Systems – R. Wattenhofer / K. Lampka

3/49

A first extension: weighted edges

- Associating weights to edges:
 - Each edge f_k has an associated weight $W(f_k)$ (defaults to 1)
 - A transition \bm{t}_i is active if each place $\bm{p}_j \in \bullet P_i$ contains at least $\mathsf{W}(\mathsf{f}_k)$ tokens.

Computer Engineering and Networks Laboratory Basic types of PN (arc weights = 1)

Free Choice net (FC-net): A PN is denoted as FC-net
iff ∀ p,p' ∈ P: p ≠ p' ⇒ p• ∩ p'• ≠ Ø ⇒ |p•| = |p'•| ≤ 1

For these simple classes many questions are decidable, e.g. can we reach a specific marking, etc.

Computer En

er Engineering and

Discrete Event Systems – R. Wattenhofer / K. Lampka

3/50

Token game in case of weighted edges

 A marking M activates a transition t_i ∈ T if each place p_k ∈ •P_i contains enough tokens:

 $\forall p_j \in \bullet t_i : m(p_j) \ge W(f(p_j, t_i))$

- When a transition $\mathbf{t}_{i} \in T$ fires, it
 - adds tokens to output places (1)
- <u>Remark</u>: $m(p_j)'$ is the next value, i.e. the next marking of place p_i
- consumes tokens from input place (2)

1. $\forall p_i \in t_i \bullet : m(p_i)' := m(p_i) + W(f(t_i, p_i))$

2.
$$\forall p_j \in \bullet t_i : m(p_j)' := m(p_j) - W(f(p_j, t_i))$$

Computer Engineering

Discrete Event Systems – R. Wattenhofer / K. Lampka

Properties

- **Reachability** : A marking M' is *reachable* \Leftrightarrow there exists a sequence of transitions $\{\mathbf{t}_{10}, \mathbf{t}_5, \dots, \mathbf{t}_k\}$ the seq. execution of which delivers M' $M_n = (...((M_n > t_{10}) > t_5),..., > t_1)$ Decidable (exponential space and time) for standard PNs only) • **K-Bounded:** A Petri net (N, M₀) is *K*-bounded $\Leftrightarrow \forall m \in [M_0 > :$ $m(p) \leq K$ (finite PNs are trivially k-bounded & vice-versa). • **Safety:** 1-Boundedness (every node holds ≤ 1 token (always) Liveness: A PN is (strongly) live iff for any reachable state all transitions can be eventually fired. · Deadlock-free: A PN is deadlock-free or weakly live iff for each of its reachable states at least one transition is enabled. These questions are solely decidable for standard PNs only ! Discrete Event Systems - R. Wattenhofer / K. Lampka 3/53 Method 1: Incidence Matrix · Goal: Describe a Petri net through equations
- The incidence matrix A describes the token-flow according for the different transitions
- A_{ii} = gain of tokens at node i when transition j fires
- A marking M is written as a m × 1 column vector

Analysis Methods

1. Analytic methods (smart methods), e.g. based on linear algebra: solution of a system of linear equation is a necessary condition for reachability; only applicable for basic types of PNs, since PNs with more than 2 inhibitor arcs have Turing-power => most questions (deadlock-freeness, etc.) not decidable anymore.

2. Methods based on state space exploration (brute-force): 1. State Space exploration for finite PNs: Enumeration of all reachable markings.

- 2. Simulation for finite and in-finite PNs: Play token game by solely executing one of the enabled transitions (gives single trace of possible executions (= run))
- 3. State Space exploration of infinite PNs (Coverability tree): Enumeration of all classes of reachable markings
- Tik

Discrete Event Systems - R. Wattenhofer / K. Lampka

3/54

Method 1: State Equation

• The firing vector u_i describes the firing of transition *i*. It consists of all '0', except for the *i*-th position, where it has a '1'.

E.g.
$$\mathbf{t1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \mathbf{t2} = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \mathbf{t3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

• A transition *t* from **M**_k to **M**_{k+1} is written as $\mathbf{M}_{\mu+1} = \mathbf{M}_{\mu} + \mathbf{A} \cdot \mathbf{u}_{\mu}$

 M_1 is obtained from M_0 by firing t3

$\begin{bmatrix} 3\\0\\0\\2 \end{bmatrix} =$	2 0 1 0	+	[-2 1 1 0	1 -1 0 -2	1 0 -1 2	$\begin{bmatrix} 0\\0\\1\end{bmatrix}$
--	------------------	---	---------------------	--------------------	-------------------	--

 $\mathbf{A} = \begin{vmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & -2 & 2 \end{vmatrix}$

Method 1: Condition for reachability

- A marking M_k is reachable from M_0 if there is a sequence of transitions {t1, t2, ..., tk} such that $M_k = M_0 \cdot t1 \cdot t2 \cdot ... \cdot tk$.
- Expressed with the incidence matrix:

$$M_k = M_0 + A \cdot \sum_{i=1}^k u_i$$

which can be rewritten as

$$M_k - M_0 = \Delta M = A \cdot \vec{x}$$

(2)

If M_k is reachable from M_0 , equation (2) must have a solution where all components of $\vec{\textbf{x}}$

are positive integers.

(This is a necessary, but not sufficient condition for reachability.)

Computer Engineering and Discrete Event Systems	-	R. Wattenhofer / K. Lampka	3/57
---	---	----------------------------	------

Labelled transition system

A labelled transition system (LTS) is tuple $(S, Act, \rightarrow, \mathcal{I})$ where

 ${\cal S}$ is the set of reachable states (markings of the PN)

 \mathcal{I} is the set of initial states (the initial marking M₀ of the PN)

 $\mathcal{A}ct$ is the set of activity/action labels (transition identifier of the PN)

 $\longrightarrow \subseteq \mathcal{S} \times \mathcal{A}\mathit{ct} \times \mathcal{S}$ is a transition relation

Via state space exploration each finite PN can be mapped to its (underlying) transition system, also often denoted as state graph (SG).

What does set of reachable states means?

The set of reachable states is the set of those markings of a PN, which can be obtained by executing all enabled (activated transitions) within each state, starting from the initial marking M_0 . In the following we will denote such sets $Reach(\mathcal{M})$ with respect to a model *M*.

Discrete Event Systems - R. Wattenhofer / K. Lampka

Computer Engineering an Networks Laboratory

3/59

Method 2: State Space Exploration (finite PN)

- If the set of reachable states is finite, one may execute each enabled transition for each marking of the net.
- Starting with the initial marking M_0 and until a fixed point is reached gives one the set of all reachable states and the transitions among them (details on reachability algorithms will follow).

Method 2: State Space Exploration (finite PN)

Properties to be directly answered on the level of the finite SG:

- Does the model has finite executions only (termination)?
- Is the model deadlock-free?
- Is the model alive, i.e. each path contains every transition? (strongly connected component with all transition labels included)
- Is the model weakly alive: each transition occurs within the SG.
- Is the model reversible, i.e. from every reachable marking there is a way back to the initial state.
- Is m(p_i) of a place p_i bounded?

Method 3: Coverability Tree/Graph (CG) (non-finite PNs)

- A PN can be infinite, i.e. its set of reachable states is un-bounded. What can we do?
- Detect & handle infinite cycles (CG is not unique)
- What kind of questions can we answer?
 - is the PN finite ?
 - which are the bounded/un-bounded places
 - is there a marking reachable s.t. t is enabled?

Results from the Coverability Tree T

- The net is **bounded** iff ω does not appear in any node label of T
- The net is safe iff only '0' and '1' appear in the node labels of T
- A transition t is **dead** iff it does not appear as an arc in T
- If M is **reachable** from M_0 , then there exists a node M' s.t. $M \le M'$. (This is a necessary, but not sufficient condition for reachability.)
- For bounded Petri nets, this tree is also called reachability tree, as all reachable markings are contained in it.

Coverability Graph - the Algorithm

Special symbol ω , similar to ∞ : $\forall n \in \mathbb{N}$: $\omega > n$: $\omega = \omega + n$: $\omega > \omega$

- Label initial marking Mo as root and tag it as new •
- while new markings exist, pick one, say M
 - 1. If M is identical to a marking on the way from the root to M, mark it as old; continue;
 - 2. If no transitions are enabled at M, tag it as deadend;
 - 3. For each enabled transition t at M do
 - a) Obtain marking M' = M[>t
 - b) If there exists a marking M" on the way from the root to M s.t. M'(p) > M''(p) for each place p and $M' \neq M''$, replace M'(p) with ω for p where M'(p) > M''(p).
 - c) Introduce M' as a node, draw an arc with label t from M to M' and tag M' new.

Discrete Event Systems - R. Wattenhofer / K. Lampka

3/62

Compositionality

- When it comes to the modelling of complex systems, PN tend to become very large and unclear.
- Concepts developed in the context of Process Algebra have been taken over in the world of PN.
- · This allows to construct PNs in a compositional manner, where we will only roughly touch:
 - Composition via sharing of places
 - Composition via synchronization

Remark:

As it turns out, compositionality can also often be exploited when analysing high-level models.

3/63

o denotes an

Synchronisation

- · Dedicated activities have to be executed jointly:
 - T_i is the transition system of submodel *i*,
 - $\mathcal{A}ct_S$ the set of synchronizing transitions
 - Act_{S} the set of non-synchronizing transitions
- We have the following rules (modus ponens) on the level of LTS (labelled transition systems)
 - Synchronizing activities:

$$\frac{T_1: \vec{x} \stackrel{\alpha}{\to} \vec{y} \wedge T_2: \vec{q} \stackrel{\alpha}{\to} \vec{r}}{T_1 \times T_2: (\vec{x}, \vec{a}) \stackrel{\alpha}{\to} (\vec{y}, \vec{r})} \alpha \in \mathcal{A}ct_S$$

- Non-synchronizing activities

$$\frac{T_1: \vec{x} \stackrel{\alpha}{\to} \vec{y} \wedge T_2: \vec{q} \stackrel{\alpha}{\to} \vec{r}}{\times T_2: (\vec{x}, \vec{a}) \stackrel{\alpha}{\to} (\vec{y}, \vec{a}) \wedge (\vec{x}, \vec{a}) \stackrel{\alpha}{\to} (\vec{x}, \vec{r})} \alpha \in \mathcal{A}ct_{\varsigma}$$

Discrete Event Systems - R. Wattenhofer / K. Lampka

Sharing of places (variables)

Dedicated places have to hold same number of tokens:

 $\frac{T_1: (x_1, \dots, x_m) \stackrel{\alpha}{\to} (x'_1, \dots, x'_k) \land T_2: (y_1, \dots, y_m) \stackrel{\beta}{\to} (y'_1, \dots, y'_m)}{T_1 \times T_2: ((x_1, \dots, x_m); (y_1, \dots, y_m)) \stackrel{\alpha}{\to} ((x'_1, \dots, x'_m); (y_1, \dots, y''_i, \dots, y_m)) \land}$ $((x_1,\ldots,x_m);(y_1,\ldots,y_m)) \xrightarrow{\beta} ((x_1,\ldots,x''_1,\ldots,x_m);(y'_1,\ldots,y'_m))$

where for
$$\ x_i=y_j, x_i'=y_j'' \wedge x_i''=y_j' \ \text{for} \ p_i, p_j \in P_{Sh}$$
 holds

- P_{Sh} is the set of shared places
- Submodel 2: • x_i, y_j their values in a source and • x'_i, y'_i, x''_i, y''_i in a target state

Submodel 1:

Common Extensions

- Colored Petri nets: Tokens carry values (colors) Any Petri net with finite number of colors can be transformed into a regular Petri net.
- Continuous Petri nets: The number of tokens can be real. Cannot be transformed to a regular Petri net
- Inhibitor Arcs: Enable a transition if a place contains no tokens Cannot be transformed to a regular Petri net, as soon as we have more than 2 inhibitor arcs (for 2 inhibitor arcs this depends on the structure of the PN)

Discrete Event Systems - R. Wattenhofer / K. Lampka

Discrete Event Systems - R. Wattenhofer / K. Lampka

Literature

- W. Reisig: Petri Netze Eine neue Elnfuehrung, November 2007, http://www2.informatik.hu-berlin.de/top/pnene buch/pnene buch.pdf
- Falko Bause, P. Kritinger: Stochastic Petri Nets An Introduction to the Theory, 2002 http://ls4-www.informatik.uni-dortmund.de/QM/MA/fb/spnbook2.html
- C. Girault, R. Valk: Petri Nets for Systems Engineering -- A Guide to Modeling, Verification, and Applications 2003
- B. Baumgarten: Petri-Netze -- Grundlagen und Anwendungen. BI Wissenschaftsverlag, Mannheim, 1990

Tik				
Computer Engineering and Networks Laboratory	Discrete Event Systems	-	R. Wattenhofer / K. Lampka	3/69

Standard reachability analysis technique

1)	Stack := ø, HashTable := ø s ₀ := initialState	
2)	push(s ₀ , Stack)	
3)	insert(s_0 , HashTable)	
4)	Call DFS()	
5)	Function DFS()	
6)	While (Stack != ø)	
7)	S := pop(Stack)	
8)	Forall succ s' of s do	
9)	lf (s'HashTable)	
10)	push(s' , Stack)	
11)	insert(s' , HashTable)	
12)	endif	
13)	od	
14)	endwhile	
15)	endfunction	

Analysis of finite high-level models

- Common high-level model description techniques have Turing-power => most questions are not decidable.
- If a dynamic model, e.g. a PN, is bounded or finite one may generate its underlying reachability graph, also commonly denoted as state graph (SG). Its inspection may answer the questions of interest such as deadlockfreeness. liveness. ...
- In the following we will discuss two techniques for analyzing such systems
 - Standard approach: Reachability analysis, based on hash table
 - Symbolic approaches: Reachability analysis, based on "symbolic" data structures

Discrete Event Systems - R. Wattenhofer / K. Lampka

State Space Explosion

Interleaving semantics gives that the number of states grows exponential with the number of independent transitions and or with the number of tokens (concurrent processes).

7	I	ļ
-		

Discrete Event Systems - R. Wattenhofer / K. Lampka

Binary Decision Diagrams

- A Binary Decision Diagram (BDD) is a directed noncyclic graph for representing Boolean functions ({1,0}ⁿ \rightarrow {0,1}).
- Thus they can be used for encoding sets and transition relations, i.e. a BDD may represent a characteristic function of a set S

$$\chi(x) := \begin{cases} 1 & \leftrightarrow x \in \mathcal{S} \\ \\ 0 & \text{else} \end{cases}$$

- var: $\mathcal{K}_{NT} \to \mathcal{V}$
- value: $\mathcal{K}_T \to \{0, 1\}$
- then- and else-function: $\mathcal{K}_{NT} \to \mathcal{K}_T \cup \mathcal{K}_{NT}$.
 - > dashed line else- or 0-successor: else(n) = I

> solid line then- or 1-successor: then(n) = k

Discrete Event Systems - R. Wattenhofer / K. Lampka

3/75

Reduced ordered Binary Decision Diagram

A BDD is called reduced *iff* there exist

- no don't care node: $\not\exists n \in \mathcal{K}_{NT}$: else(n) = then(n).
- no isomorphic nodes: $\not\exists n, k \in \mathcal{K}_{NT} : k \equiv n$

A BDD is called ordered *iff* there exists no node the children of which are labelled with a large/smaller variable with respect to an ordering relation: $\not\exists n \in \mathcal{K}_{NT} : var(\texttt{else}(n)) < var(n) \lor var(\texttt{then}(n)) < var(n).$

Reduced ordered Binary Decision Diagram

h

С

0 1 0

0

Merge redundant terminal nodes !

0

0

0

--- h

-- c

Shannon-Expansion

Check op cache if result is already known (4) res = cacheLookup(op, n, m);

(5) If $res \neq \epsilon$ Then Return*res*;

Engineering and

Computer Engine

Discrete Event Systems - R. Wattenhofer / K. Lampka

How-to exploit compositionality, when using BDDs?

· Synchronization of activities:

$$\prod_{\alpha_i \in \mathcal{A}ct_S} \mathsf{Z}_{\alpha_i} \cdot \mathsf{Z}_i \cdot \mathbf{1}_i + \sum_{\beta_j \in \mathcal{A}ct_S} \mathsf{Z}_{\beta_j} \cdot \mathsf{Z}_j \cdot \mathbf{1}_j$$

· Sharing of variables

 $\sum_{\beta_j \in \mathcal{A}ct} \mathsf{Z}_j \cdot \mathbf{1}_j$

- Z_{α} is the BDD representing the transition name (index),
- Z_i is the BDD representing the transition system of submodel i,
- 1, are identity structures of appropriate dimension.

Computer Engineering and Discr Networks Laboratory	rete Event Systems –	R. Wattenh	nofer / K. Lampka	3/89
---	----------------------	------------	-------------------	------

Literature

- Wikipedia: http://en.wikipedia.org/wiki/Binary Decision Diagrams
- R.E. Bryant: Graph-based Algorithms for Boolean Function Manipulation, IEEE Transactions on Computers No. 8, 1986, p. 677-691.
- · Ch. Meinel and Th. Theobald: Algorithms and Data Structures in VLSI-Design, Springer, 1998 http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG ITS/books/OBDD-Book.pdf
- Ingo Wegener: Branching Programs and Binary Decision Diagrams, SIAM, 2000.
- T. Sasao and M. Fujita (eds.): Representations of Discrete Functions, Kluwer Academic Publishers, 1996.

Common Extensions of BDDs

- Multi-terminal BDDs: Terminal nodes hold values from a finite domain (pseudo-boolean functions)
- Zero-suppressed (MT) BDDs: Instead of dnc-nodes one eliminates nodes the out-going 1-one edge of which leads to the 0-sink.
- Multi-valued DD: Nodes contain set of numbers an have mor than 2successors only
- •

TE

Discrete Event Systems - R. Wattenhofer / K. Lampka

3/90

Outlook: From BDDs to SAT-solvers

State-of-the-art

- State machines, i.e. their transition relation (TR) can be represented by Binary Decision Diagram (= directed, acvclic graph for rep. Boolean functions)
 - · complex procedures for deriving BDD from high-level model description
 - · BDD encodes one-step TR, two sets of boolean variables:
 - x-variables holding source states
 - y-variabels for holding target states t

Depending on the modelled system BDD may explode in the number of allocated nodes (add-function y := x + p)

New trends: SAT-Solvers have shown to be of value in such cases

SAT-Solvers at glance (1)

- Satisfiability: Does there exists an assignment to the variables of a formula α of propositional logics, so that the formula evaluates to true
- 3-SAT: In general this problem is NP-complete (Cook 1972)
 - => One may not expect always efficient computations. But in practice SAT-solver have shown to be very powerful, outperform BDDs
- Employing SAT-based MC:
 - Encode TR as boolean formula (unfolding of loops, each step in TR is encoded by a new set of variables, k-steps within TR?

$$I(s_0) \wedge \bigwedge_{i=0}^{k-1} T(s_i, s_{i-1})$$

- Encode properties to be checked as boolean equation
- Check if the obtained overall formula is satisfiable

Computer Engineering and Networks Laboratory Discrete Event Systems - R. Wattenhofer / K. Lampka

3/93

Literature

- Wikipedia: http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
- A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu: Bounded Model checking, Advances in Computers (Vol. 58), Academic Press 2003, original paper appeared in 1999.

Computer Engl

nputer Engineering and

Discrete Event Systems – R. Wattenhofer / K. Lampka