

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FS 2023 Prof. R. Wattenhofer

Principles of Distributed Computing Exercise 6: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

For the **Bonus** task you can see for instance this short article for a nice visual.

b) When k = 3 a fooling set of size 4 for *DISJ* is, e.g.,

$$S_1 := \{(111,000), (110,001), (101,010), (100,011)\}.$$

Entries in M^{DISJ} corresponding to elements of S_1 are marked dark gray. Note that a fooling set need not be on a diagonal of the matrix. E.g.

$$S_2 := \{(001, 110), (010, 001), (011, 100), (100, 010)\},\$$

marked light gray in ${\cal M}^{DISJ}.$

- c) If $x_1 = x_2$, then we would have $(x_1, y_j) = (x_2, y_j)$ for $j \in \{1, 2\}$ and thus $f(x_1, y_2) = f(x_2, y_2) = f(x_1, y_1) = f(x_1, y_2) = z$, contradicting the definition of a fooling set. Similarly for $y_1 = y_2$.
- d) $S := \{(x, \overline{x}) \mid x \in \{0, 1\}^k\}$ is a fooling set for *DISJ*:
 - For any $(x,y) \in S$, DISJ(x,y) = 1, by our definition of S.
 - Now, consider any two distinct elements of S: $(x_1, \overline{x_1})$ and $(x_2, \overline{x_2})$. Since $x_1 \neq x_2$, either x_1 has set bit which x_2 does not, or x_2 has some set bit which x_1 does not (or both). Without loss of generality, x_1 has some set bit which x_2 does not, but then x_1 and $\overline{x_2}$ are not disjoint, meaning that $DISJ(x_1, \overline{x_2}) = 0$.

The size of S is 2^k , so k is a lower bound for the CC(DISJ) by the result from the lecture.

2 Distinguishing Diameter 2 from 4

- a) Note that O(D) = O(1), since $D \le 4$ holds for all graphs being considered.
 - Choosing $v \in L$ takes time O(1): use any leader election protocol from the lectures. E.g., the node with smallest ID in L can be elected as a leader. This leader node will be node v. Note that, during the leader election protocol, if after 4 rounds no messages are received, then a node can conclude that all nodes are in H, so checking whether $L \neq \emptyset$ does not need to be done separately.
 - Computing a BFS tree from a vertex takes time O(D) = O(1). Since $v \in L$, at most $|N_1(v)| \le s$ executions of BFS are performed. These can be started one after each other and yield a total time complexity of O(s).
 - The comment states: computing a dominating set $\mathcal{D}OM$ takes time O(D) = O(1).
 - Since $|\mathcal{D}OM| \leq \frac{n \log n}{s}$, the time complexity of computing all BFS trees from each vertex in $\mathcal{D}OM$ (one after each other) is $O\left(\frac{n \log n}{s}\right)$.
 - Checking whether all trees have depth at most 2 can be done in O(D) = O(1) as well: each node knows its depth in any of the computed trees. If its depth is 3 or 4, it floods "diameter is 4" to the graph. If a node gets such a message from several neighbors, it only forwards it to those from which it did not receive it yet. If any node did not receive message "diameter is 4" after 4 rounds, it decides that the diameter is 2. Otherwise, it decides that the diameter is 4. This decision will be consistent among all nodes.
 - By adding all these runtimes, we conclude that the total time complexity of Algorithm 2-vs-4 is $O\left(s + \frac{n \log n}{s}\right)$.
- **b)** By differentiating $s+\frac{n\log n}{s}$ as a function of s we can argue that $s+\frac{n\log n}{s}$ is minimal for $s=\sqrt{n\log n}$. Alternatively, one can use the fact that $a+b\geq 2\sqrt{ab}$, with equality if and only if a=b, to get that $s+\frac{n\log n}{s}\geq \sqrt{2s\frac{n\log n}{s}}=\sqrt{n\log n}$, with equality if and only if $s=\frac{n\log n}{s}\iff s=\sqrt{n\log n}$. For this value of s, we get a runtime of $O(\sqrt{n\log n})$.
- c) Since in this case no BFS tree can have depth larger than 2, the algorithm will always return "diameter is 2".
- d) If w=s, the claim is immediate. Otherwise, using the triangle inequality we have that $d(s,w)+d(w,t)\geq 4\iff 1+d(w,t)\geq 4\iff d(w,t)\geq 3$, so the BFS tree of w has depth at least 3. Therefore, Algorithm 2-vs-4 decides "diameter is 4".
- e) If the BFS started in v has depth at least 3, then we are done. Otherwise, we have $d(s, v) \leq 2$. Using d) we conclude that d(s, v) = 2. Let w be a node that connects s to v. Since $w \in N_1(v)$, Algorithm 2-vs-4 executes a BFS from w. Then, apply d) using that $w \in N_1(s)$.
- f) Since $\mathcal{D}OM$ is a dominating set, it follows that the algorithm executes a BFS from a node $w \in \mathcal{D}OM \cap N_1(s) \neq \emptyset$. Now apply d).
- g) A careful look into the construction of family \mathcal{G} reveals that we essentially showed an $\Omega(n/\log n)$ lower bound to distinguish diameter 2 from 3. Since the graphs considered here cannot have diameter 3, the studied algorithm does not contradict this lower bound. Suppose we had to decide between diameter 2 and 3 (instead of 2 and 4) and we try using this exact algorithm. Indeed, if the algorithm finds a BFS tree of depth greater than 2, then the diameter is 3. However, if all BFS trees found are diameter 2 or less, the diameter could still be 3.

h) Consider a clique with n nodes, where n should be large enough, and remove an arbitrary edge (u,v) from it. Since d(u,v)=2, the graph has diameter 2. We have that $L=\emptyset$ and that for any $w\notin\{u,v\}$ the set $\{w\}$ is a dominating set. If one such $\mathcal{D}OM=\{w\}$ is selected in the algorithm, then Algorithm 2-vs-4 executes exactly one BFS (from w), which has depth 1, disproving the claim. Note that this proof works for all $s\leq n-2$.