Principles of Distributed Computing Exercise 7: Sample Solution

1 Concurrent Ivy

a) The three nodes are served in the order v_{2}, v_{3}, v_{1}.
b) Figure 1 depicts the structure of the tree after the requests have been served. Since v_{1} is served last, it is the holder of the token at the end.

Figure 1: Tree after the requests have been served.

2 Tight Ivy

a) In order to show that the bound of $\log n$ steps on average is tight, we construct a special tree which is defined recursively as follows. The tree \mathcal{T}_{0} consists of a single node. The tree \mathcal{T}_{i} consists of a root together with i subtrees, which are $\mathcal{T}_{0}, \ldots, \mathcal{T}_{i-1}$, rooted at the i children of the root, see Figure 2.
First, we will show that the number of nodes in the tree \mathcal{T}_{i} is 2^{i}. This obviously holds for \mathcal{T}_{0}. The induction hypothesis is that it holds for all $\mathcal{T}_{0}, \ldots, \mathcal{T}_{i-1}$. It follows that the number of nodes of \mathcal{T}_{i} is $n=1+\sum_{j=0}^{i-1} 2^{j}=2^{i}$.
We will show now that the radius of the root of \mathcal{T}_{i} is $\mathcal{R}\left(\mathcal{T}_{i}\right)=i$. Again, this is trivially true for \mathcal{T}_{0}. It is easy to see that $\mathcal{R}\left(\mathcal{T}_{i}\right)=1+\mathcal{R}\left(\mathcal{T}_{i-1}\right)$, because \mathcal{T}_{i-1} is the child with the largest radius. Inductively, it follows that $\mathcal{R}\left(\mathcal{T}_{i}\right)=i$.
By definition, when cutting off the subtree \mathcal{T}_{i-1} from \mathcal{T}_{i}, the resulting tree is again \mathcal{T}_{i-1}. Let $\mathcal{C}: \mathcal{T}_{i} \mapsto \mathcal{T}_{i-1}$ denote this cutting operation. For all $i>0$, we thus have that $\mathcal{C}\left(\mathcal{T}_{i}\right)=\mathcal{T}_{i-1}$.

Figure 2: The trees $\mathcal{T}_{0}, \ldots, \mathcal{T}_{3}$.

We will now start a request at the single node v with a distance of i from the root in \mathcal{T}_{i}. On its path to the root, the request passes nodes that are roots of the trees $\mathcal{T}_{1}, \ldots, \mathcal{T}_{i}$. All of those nodes become children of the new root v according to the Ivy protocol. The new children lose their largest "child" subtree in the process, thus the children of node v have the structures $\mathcal{C}\left(\mathcal{T}_{1}\right), \ldots, \mathcal{C}\left(\mathcal{T}_{i}\right)=\mathcal{T}_{0}, \ldots, \mathcal{T}_{i-1}$. Hence, the structure of the tree does not change due to the request and all subsequent requests can also cost i steps. Since $n=2^{i}$, each request costs exactly $\log n$.
b) The access pattern we described above already has the property that each node requests the object in sequence. We can show this inductively over i for the trees \mathcal{T}_{i}.

First we introduce some additional notation. We consider a tree \mathcal{T}_{i}, for any $i>0$, as two parts: The left subtree $\mathcal{L}\left(\mathcal{T}_{i}\right)$, which has the structure of \mathcal{T}_{i-1}, and the rest of the tree $\mathcal{R}\left(\mathcal{T}_{i}\right)$, which also has the same structure has \mathcal{T}_{i-1}. We then write $\mathcal{T}_{i}=\mathcal{L}\left(\mathcal{T}_{i}\right) \rightarrow \mathcal{R}\left(\mathcal{T}_{i}\right)$ to indicate that \mathcal{T}_{i} is the tree obtained by rooting $\mathcal{L}\left(\mathcal{T}_{i}\right)$ as the left-most child of the root in $\mathcal{R}\left(\mathcal{T}_{i}\right)$. We note that with this notation one iteration of Ivy handling a request from the highest-depth leaf performs a tree rotation that can be described recursively as $\operatorname{Rot}\left(\mathcal{T}_{i}\right)=\operatorname{Rot}\left(\mathcal{R}\left(\mathcal{T}_{i}\right)\right) \rightarrow$ $\mathcal{L}\left(\mathcal{T}_{i}\right)$. We further write $\operatorname{Rot}^{k}\left(\mathcal{T}_{i}\right)=\operatorname{Rot}\left(\operatorname{Rot}^{k-1}\left(\mathcal{T}_{i}\right)\right)$ with $\operatorname{Rot}^{0}\left(\mathcal{T}_{i}\right)=\mathcal{T}_{i}$.
We can now show this inductively over i for the trees \mathcal{T}_{i}. We will start with \mathcal{T}_{1} as the base case since our notation only works for $i>0$ and the case for \mathcal{T}_{0} is trivial. In the first iteration on \mathcal{T}_{1} the leaf node requests the object, after that the edge is switched and the previous root node requests the object. For the inductive step we observe that over i iterations of the access pattern above Ivy accesses the highest-depth leaves of the trees $\mathcal{T}_{i}, \operatorname{Rot}\left(\mathcal{T}_{i}\right), \ldots, \operatorname{Rot}^{2^{i}-1}\left(\mathcal{T}_{i}\right)$. Unwinding the definition of Rot we see that these correspond to the highest-depth leaves of $\mathcal{L}\left(\mathcal{T}_{i}\right), \operatorname{Rot}\left(\mathcal{L}\left(\mathcal{T}_{i}\right)\right), \ldots, \operatorname{Rot}^{2^{i-1}-1}\left(\mathcal{L}\left(\mathcal{T}_{i}\right)\right)$ on even (zero-indexed) iterations, and $\operatorname{Rot}\left(\mathcal{R}\left(\mathcal{T}_{i}\right)\right), \operatorname{Rot}^{2}\left(\mathcal{R}\left(\mathcal{T}_{i}\right)\right), \ldots, \operatorname{Rot}^{2^{i-1}}\left(\mathcal{R}\left(\mathcal{T}_{i}\right)\right)$ on odd (zero-indexed) iterations. According to the inductive hypothesis these iterate through the 2^{i-1} nodes of the two subtrees $\mathcal{L}\left(\mathcal{T}_{i}\right)$ and $\mathcal{R}\left(\mathcal{T}_{i}\right)$. Thereby the alternation of the two iterates over all 2^{i} nodes of \mathcal{T}_{i}.

