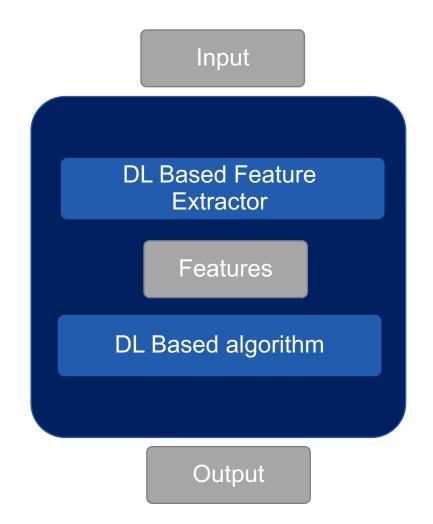
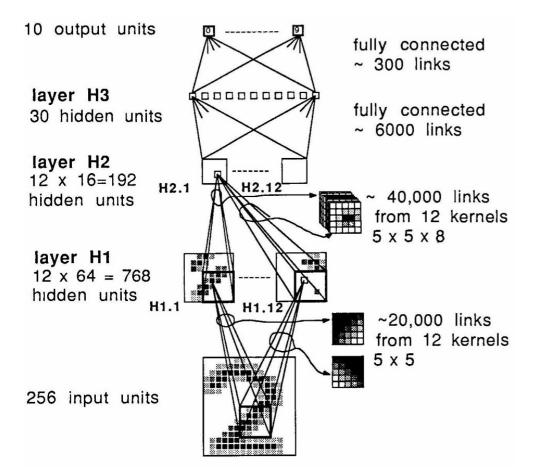


MLP-Mixer: an all-MLP Architecture for Vision

Lara Nonino Seminar in Deep Neural Networks (FS 2024) 16 April 2024, ETH Zürich

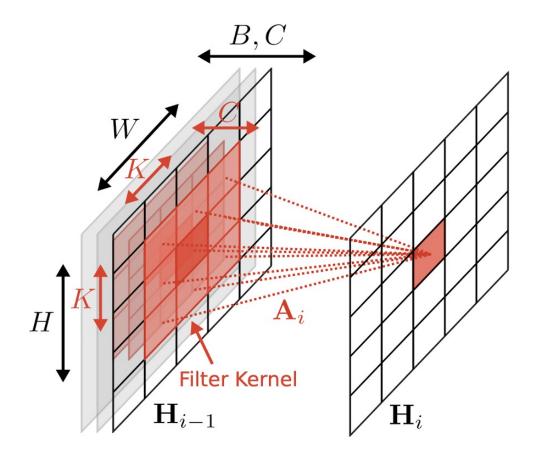
Traditional Computer Vision


• Hand-crafted image features, meaning that specific filters or feature detectors are designed based on the task.

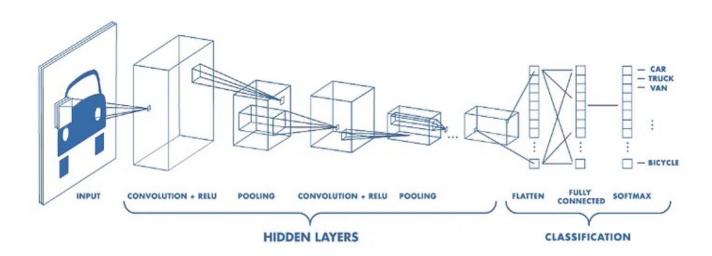

Deep Neural Networks

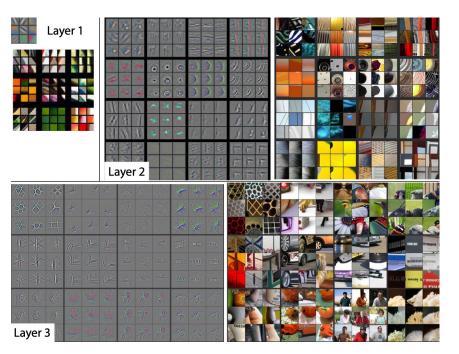
- Multilayer perceptrons
- Convolutional Neural Networks

Attention-based Neural Networks


Multilayer perceptrons (MLPs)

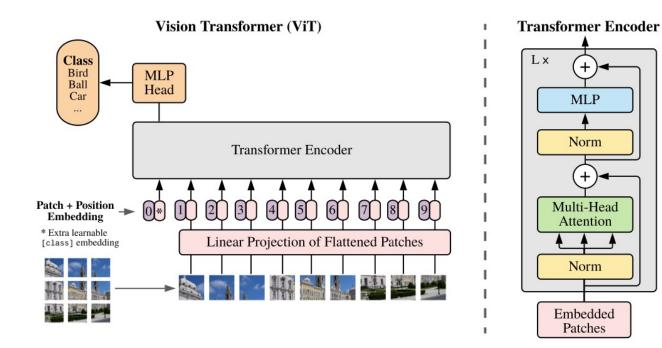
1989 - Backpropagation Applied to Handwritten Zip Code Recognition


Convolutional Neural Networks (CNNs)



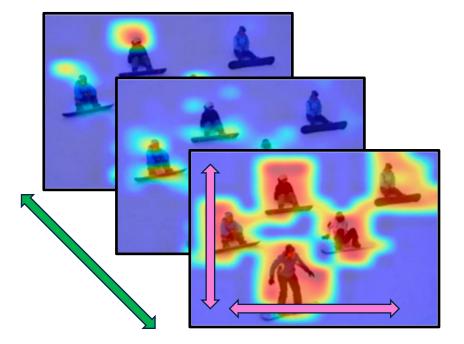
Convolution $H_i(x, y) = \sum_{m=-k}^{k} \sum_{n=-k}^{k} K(-m, -n) H_{i-1}(x + m, y + n)$

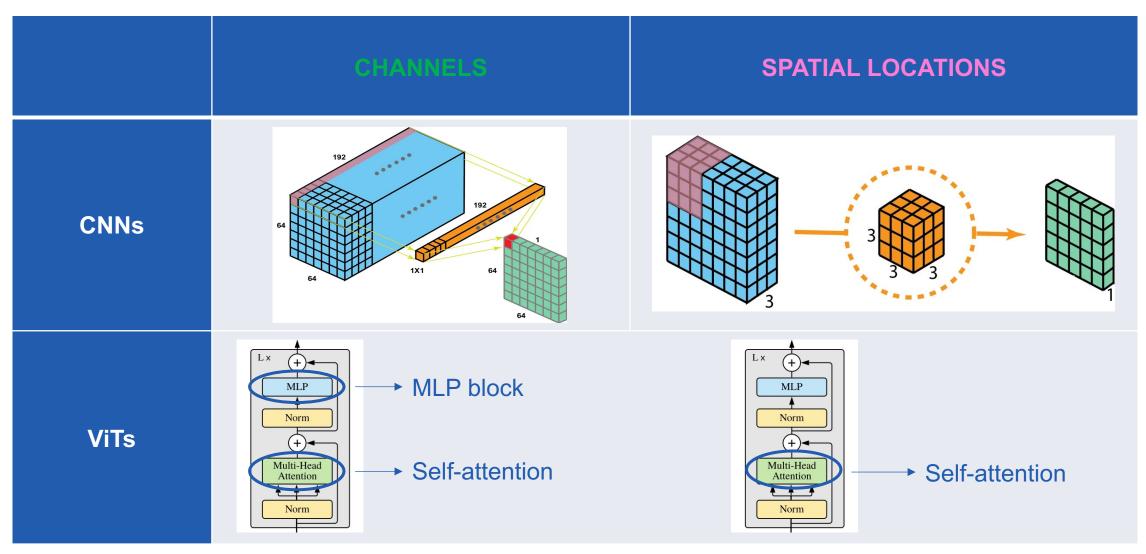
Convolutional Neural Networks (CNNs)


- Features are learnt directly from data through convolutions.
- CNNs bring inductive biases (hierarchical structure, local connectivity, parameter sharing, translation equivariance, etc).

Attention-based Networks

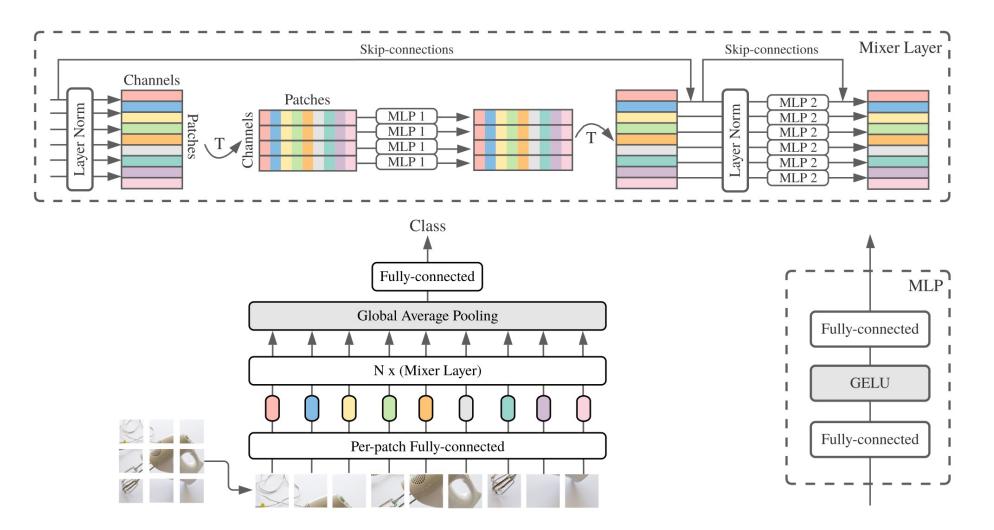
- Features are learnt directly from data through self-attention.
- Bring fewer inductive biases compared to CNNs (global receptive field, lesser spatial bias, etc).




Modern deep vision architectures consist of layers that mix features

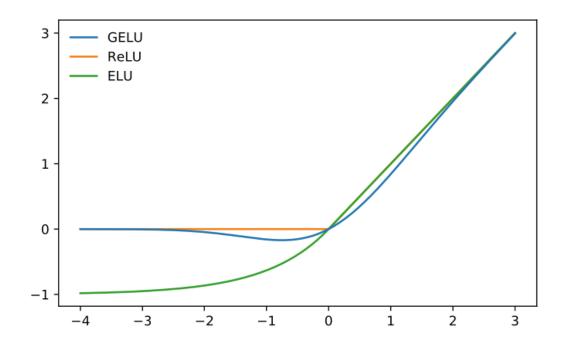
• between channels

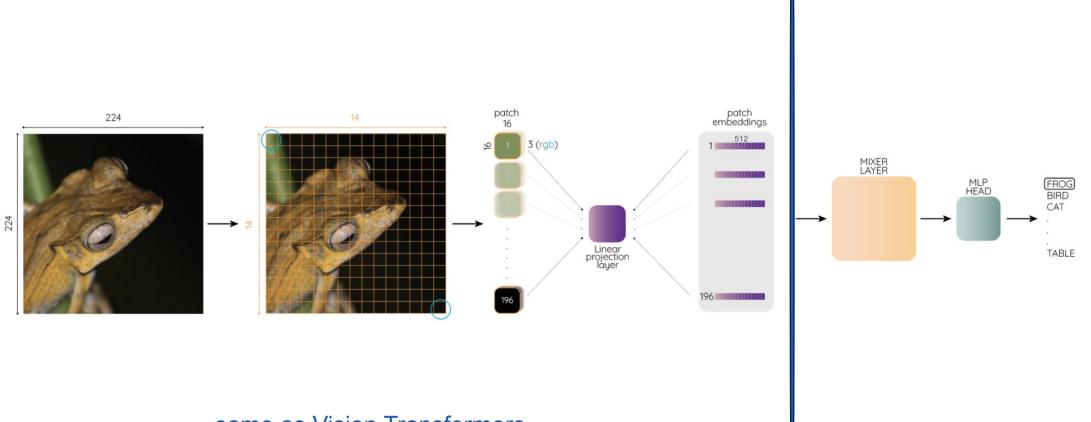
between spatial locations

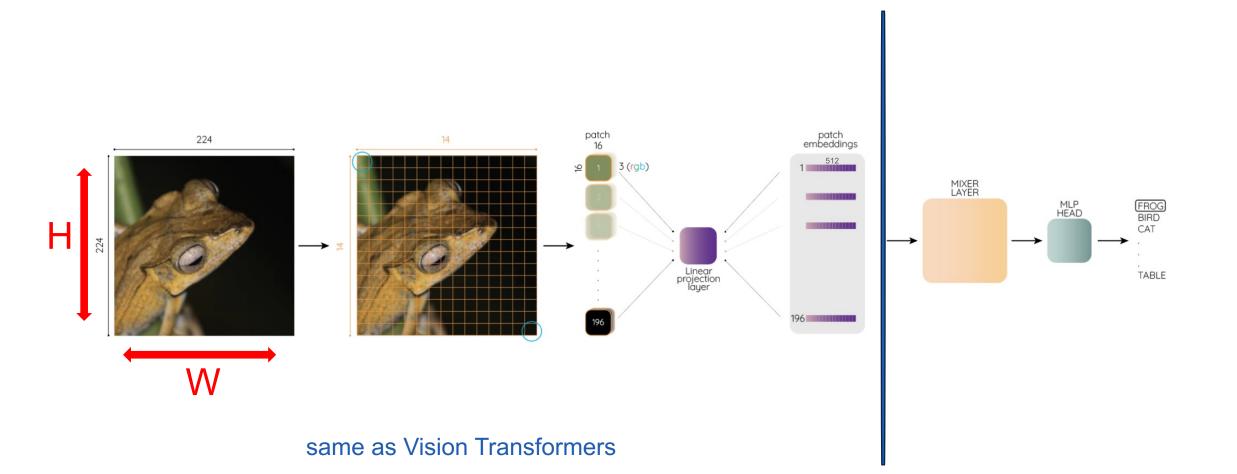


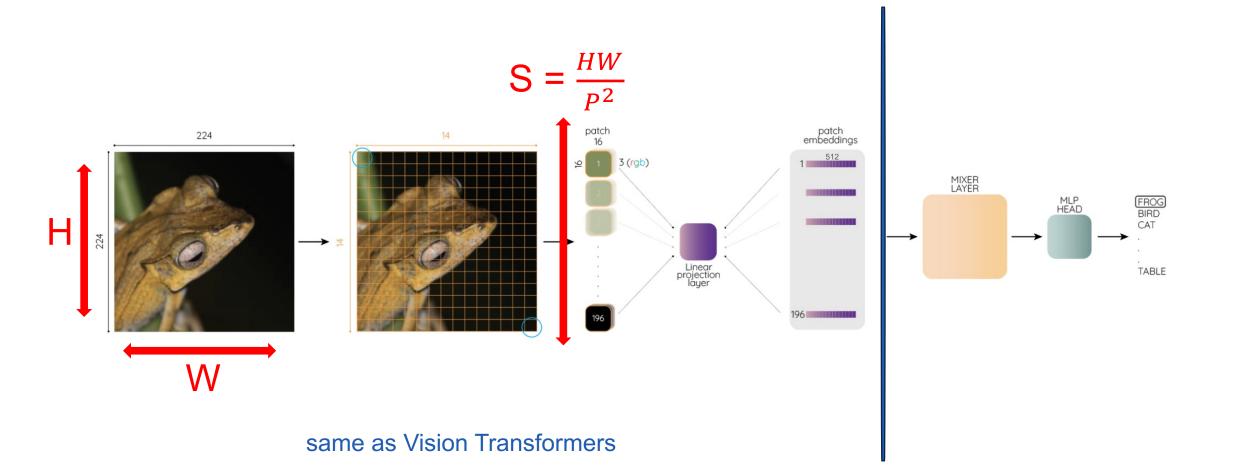
or both at once.

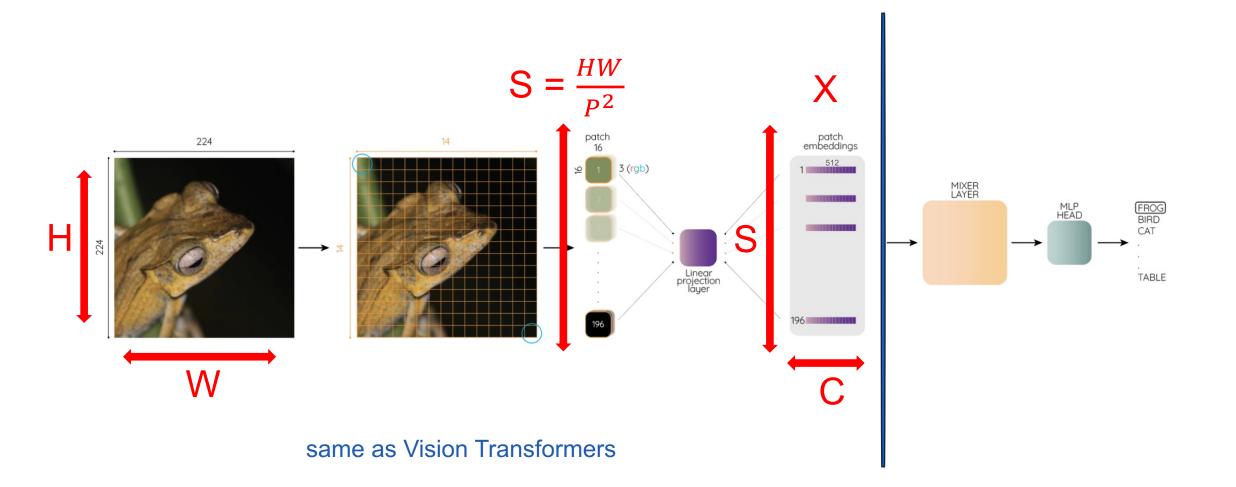
ETH zürich

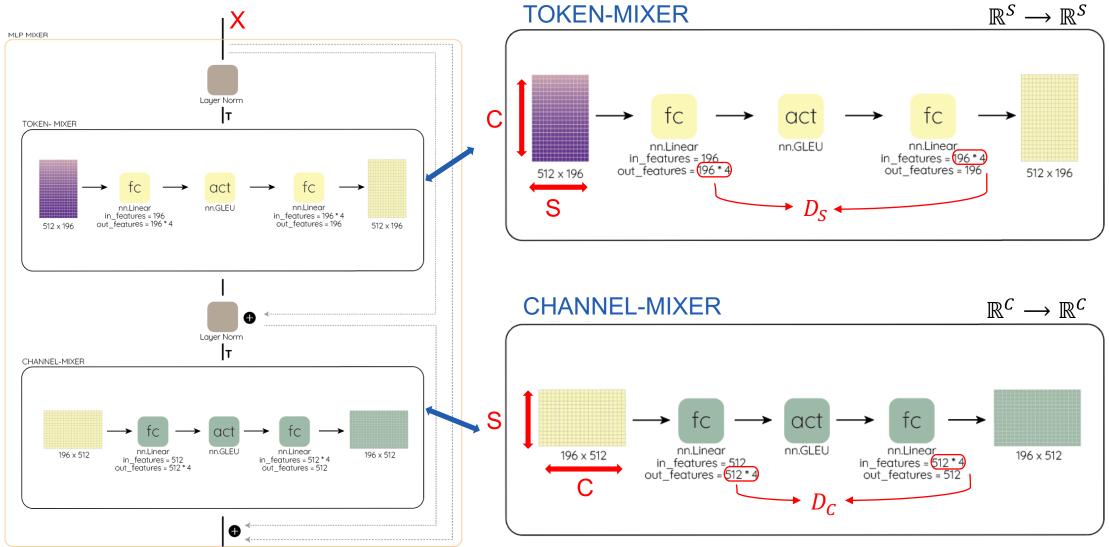

Medium Blogpost [5] Dosovitskiy et al. [4]




Gaussian Error Linear Unit - GELU

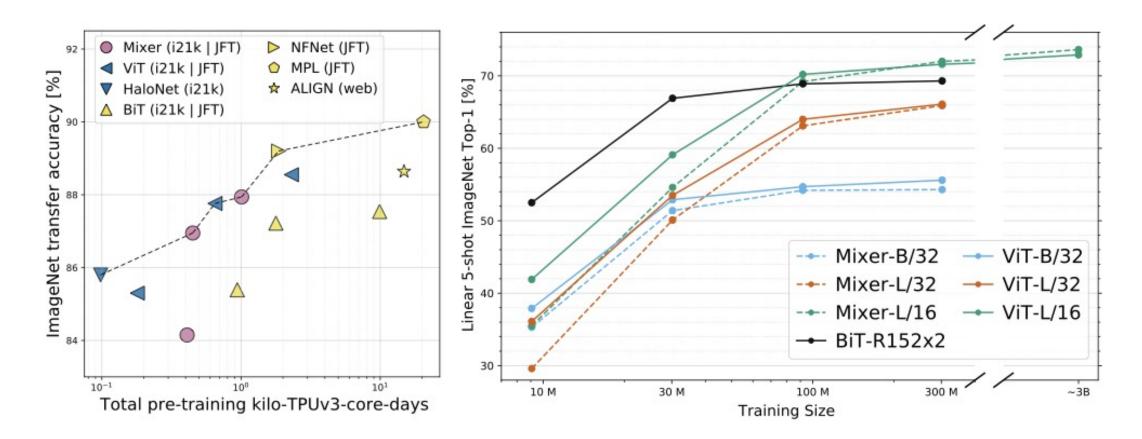

$$GELU(x) = xP(X \le x) = x\Phi(x)$$
$$X \sim \mathcal{N}(0,1)$$




same as Vision Transformers

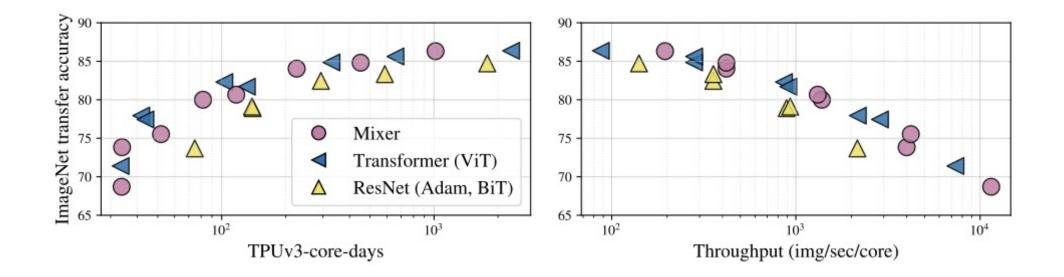
Evaluate according to three primary quantities:

- 1. Accuracy on the downstream task
- 2. Total computation cost of pre-training
- 3. Test-time throughput


Our goal is not to demonstrate state-of-the-art results, but to show that, remarkably, a simple MLP-based model is competitive with today's best convolutional and attention-based models.

Specifications of the Mixer architectures

Specification	S/32	S/16	B/32	B/16	L/32	L/16	H/14
Number of layers	8	8	12	12	24	24	32
Patch resolution $P \times P$	32×32	16×16	32×32	16×16	32×32	16×16	14×14
Hidden size C	512	512	768	768	1024	1024	1280
Sequence length S	49	196	49	196	49	196	256
MLP dimension D_C	2048	2048	3072	3072	4096	4096	5120
MLP dimension D_S	256	256	384	384	512	512	640
Parameters (M)	19	18	60	59	206	207	431


	ImNet top-1	ReaL top-1	Avg 5 top-1	VTAB-1k 19 tasks	Throughput img/sec/core	TPUv3 core-days				
Pre-trained on ImageNet-21k (public)										
• HaloNet [51]	85.8				120	0.10k				
 Mixer-L/16 	84.15	87.86	93.91	74.95	105	0.41k				
• ViT-L/16 [14]	85.30	88.62	94.39	72.72	32	0.18k				
• BiT-R152x4 [22]	85.39		94.04	70.64	26	0.94k				
	Pre-trained on JFT-300M (proprietary)									
• NFNet-F4+ [7]	89.2				46	1.86k				
• Mixer-H/14	87.94	90.18	95.71	75.33	40	1.01k				
• BiT-R152x4 [22]	87.54	90.54	95.33	76.29	26	9.90k				
• ViT-H/14 [14]	88.55	90.72	95.97	77.63	15	2.30k				
Pre-trained on unlabelled or weakly labelled data (proprietary)										
• MPL [34]	90.0	91.12			_	20.48k				
• ALIGN [21]	88.64			79.99	15	14.82k				

	ImNet top-1	ReaL top-1	Avg 5 top-1	VTAB-1k 19 tasks	Throughput img/sec/core	TPUv3 core-days				
Pre-trained on ImageNet-21k (public)										
• HaloNet [51]	85.8				120	0.10k				
 Mixer-L/16 	84.15	87.86	93.91	74.95	105	0.41k				
• ViT-L/16 [14]	85.30	88.62	94.39	72.72	32	0.18k				
• BiT-R152x4 [22]	85.39		94.04	70.64	26	0.94k				
	Pre-trained on JFT-300M (proprietary)									
• NFNet-F4+ [7]	89.2				46	1.86k				
Mixer-H/14	87.94	90.18	95.71	75.33	40	1.01k				
• BiT-R152x4 [22]	87.54	90.54	95.33	76.29	26	9.90k				
• ViT-H/14 [14]	88.55	90.72	95.97	77.63	15	2.30k				
Pre-trained on unlabelled or weakly labelled data (proprietary)										
• MPL [34]	90.0	91.12				20.48k				
• ALIGN [21]	88.64			79.99	15	14.82k				

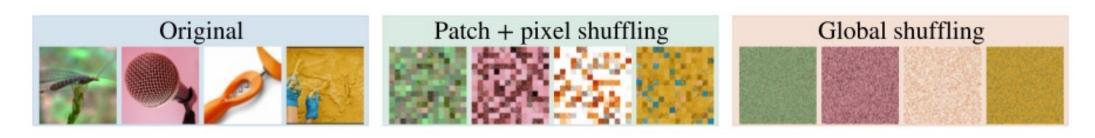
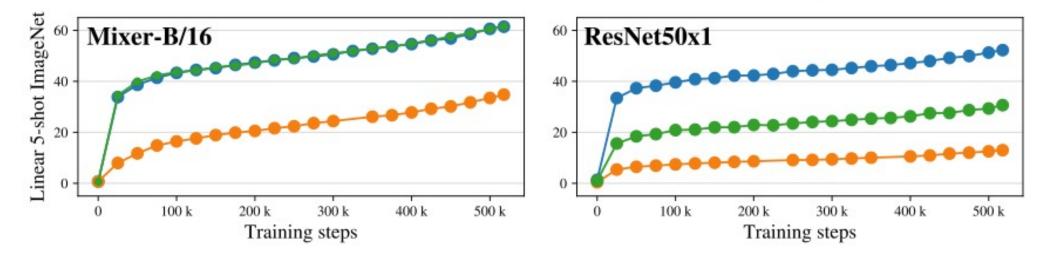
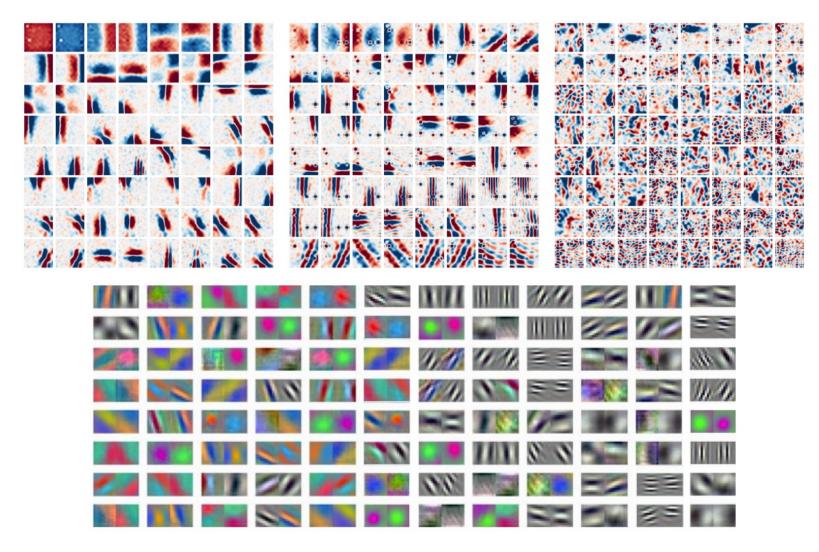
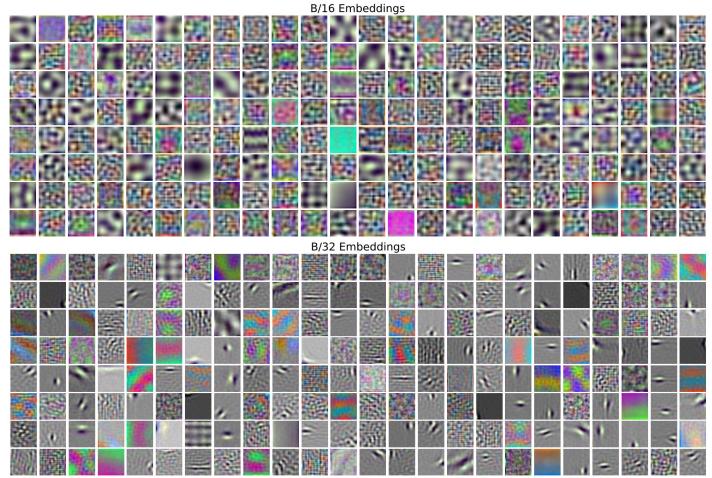


	Image size	Pre-Train Epochs	ImNet top-1	ReaL top-1	Avg. 5 top-1	Throughput (img/sec/core)	TPUv3 core-days				
Pre-trained on ImageNet (with extra regularization)											
• Mixer-B/16	224	300	76.44	82.36	88.33	1384	0.01k ^(‡)				
• ViT-B/16 (🕿)	224	300	79.67	84.97	90.79	861	$0.02k^{(\ddagger)}$				
Mixer-L/16	224	300	71.76	77.08	87.25	419	$0.04k^{(\ddagger)}$				
• ViT-L/16 (🕿)	224	300	76.11	80.93	89.66	280	$0.05k^{(\ddagger)}$				
Pre-trained on ImageNet-21k (with extra regularization)											
• Mixer-B/16	224	300	80.64	85.80	92.50	1384	0.15k ^(‡)				
• ViT-B/16 (🕿)	224	300	84.59	88.93	94.16	861	$0.18k^{(\ddagger)}$				
• Mixer-L/16	224	300	82.89	87.54	93.63	419	$0.41k^{(\ddagger)}$				
• ViT-L/16 (🕿)	224	300	84.46	88.35	94.49	280	$0.55k^{(\ddagger)}$				
• Mixer-L/16	448	300	83.91	87.75	93.86	105	0.41k ^(‡)				
		Pre-tr	ained on .	JFT-300N	1						
• Mixer-S/32	224	5	68.70	75.83	87.13	11489	0.01k				
 Mixer-B/32 	224	7	75.53	81.94	90.99	4208	0.05k				
Mixer-S/16	224	5	73.83	80.60	89.50	3994	0.03k				
 BiT-R50x1 	224	7	73.69	81.92	_	2159	0.08k				
Mixer-B/16	224	7	80.00	85.56	92.60	1384	0.08k				
Mixer-L/32	224	7	80.67	85.62	93.24	1314	0.12k				
 BiT-R152x1 	224	7	79.12	86.12	—	932	0.14k				
 BiT-R50x2 	224	7	78.92	86.06	_	890	0.14k				
 BiT-R152x2 	224	14	83.34	88.90	_	356	0.58k				
Mixer-L/16	224	7	84.05	88.14	94.51	419	0.23k				
Mixer-L/16	224	14	84.82	88.48	94.77	419	0.45k				
 ViT-L/16 	224	14	85.63	89.16	95.21	280	0.65k				
Mixer-H/14	224	14	86.32	89.14	95.49	194	1.01k				
 BiT-R200x3 	224	14	84.73	89.58	_	141	1.78k				
Mixer-L/16	448	14	86.78	89.72	95.13	105	0.45k				
• ViT-H/14	224	14	86.65	89.56	95.57	87	2.30k				
• ViT-L/16 [14]	512	14	87.76	90.54	95.63	32	0.65k				


	Image size	Pre-Train Epochs	ImNet top-1	ReaL top-1	Avg. 5 top-1	Throughput (img/sec/core)	TPUv3 core-days
		ained on Ima	-	-	•		core auys
			<u> </u>		<u> </u>	,	(+)
 Mixer-B/16 	224	300	76.44	82.36	88.33	1384	0.01k ^(‡)
• ViT-B/16 (🕿)	224	300	79.67	84.97	90.79	861	0.02k ^(‡)
Mixer-L/16	224	300	71.76	77.08	87.25	419	$0.04k^{(\ddagger)}$
• ViT-L/16 (🕿)	224	300	76.11	80.93	89.66	280	0.05k ^(‡)
	Pre-trair	ed on Image	Net-21k (with extr	a regular	ization)	
• Mixer-B/16	224	300	80.64	85.80	92.50	1384	0.15k ^(‡)
• ViT-B/16 (🕿)	224	300	84.59	88.93	94.16	861	$0.18k^{(\ddagger)}$
Mixer-L/16	224	300	82.89	87.54	93.63	419	$0.41k^{(\ddagger)}$
• ViT-L/16 (🕿)	224	300	84.46	88.35	94.49	280	$0.55k^{(\ddagger)}$
• Mixer-L/16	448	300	83.91	87.75	93.86	105	$0.41k^{(\ddagger)}$
		Pre-tr	ained on .	JFT-300N	1		
• Mixer-S/32	224	5	68.70	75.83	87.13	11489	0.01k
 Mixer-B/32 	224	7	75.53	81.94	90.99	4208	0.05k
Mixer-S/16	224	5	73.83	80.60	89.50	3994	0.03k
 BiT-R50x1 	224	7	73.69	81.92	_	2159	0.08k
 Mixer-B/16 	224	7	80.00	85.56	92.60	1384	0.08k
 Mixer-L/32 	224	7	80.67	85.62	93.24	1314	0.12k
 BiT-R152x1 	224	7	79.12	86.12	—	932	0.14k
 BiT-R50x2 	224	7	78.92	86.06	—	890	0.14k
 BiT-R152x2 	224	14	83.34	88.90	—	356	0.58k
 Mixer-L/16 	224	7	84.05	88.14	94.51	419	0.23k
Mixer-L/16	224	14	84.82	88.48	94.77	419	0.45k
• ViT-L/16	224	14	85.63	89.16	95.21	280	0.65k
 Mixer-H/14 	224	14	86.32	89.14	95.49	194	1.01k
 BiT-R200x3 	224	14	84.73	89.58	_	141	1.78k
Mixer-L/16	448	14	86.78	89.72	95.13	105	0.45k
• ViT-H/14	224	14	86.65	89.56	95.57	87	2.30k
• ViT-L/16 [<u>14</u>]	512	14	87.76	90.54	95.63	32	0.65k


Invariance to input permutation

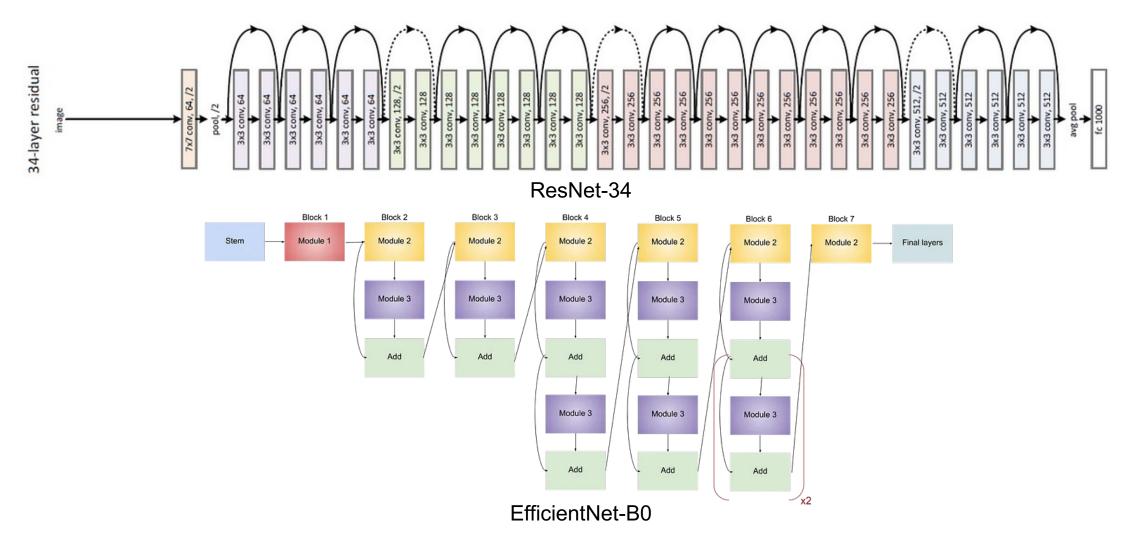
original — global shuffling — patch + pixel shuffling


Visualization

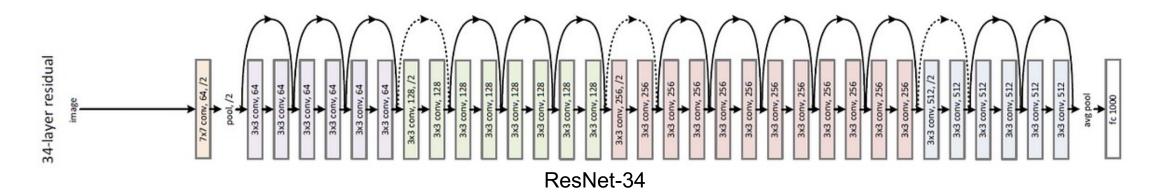
MLP-mixer

AlexNet

Visualization



Linear projection units of the embedding layer for Mixer-B/16 (**Top**) and Mixer-B/32 (**Bottom**) models pre-trained on JFT-300M.


Conclusions

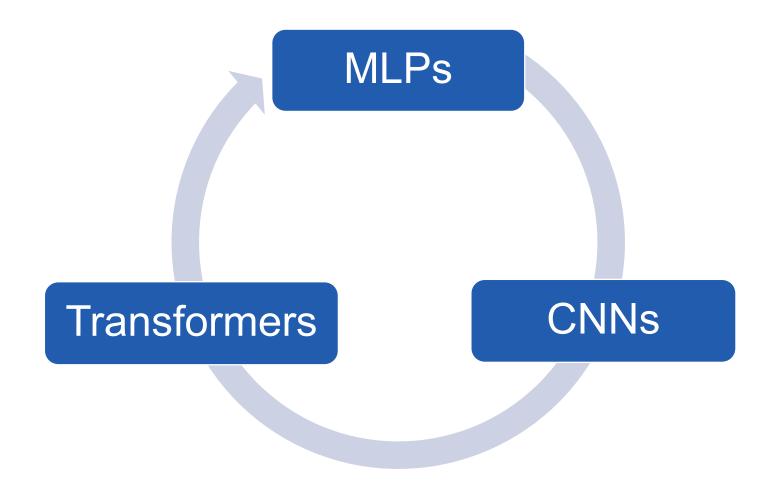
- Very simple architecture for vision
- As good as existing state-of-the-art methods in terms of trade-off between accuracy and computational resources required for training and inference
- Open questions:
 - <u>Practical side</u>: study the features learnt by the model and identify the main differences from those learnt by CNNs and Transformers.
 - <u>Theoretical side</u>: understand the inductive biases hidden in these various features and their role.
- It would be interesting to see whether such a design works in NLP or other domains.

Conclusions – similar architectures

Conclusions – similar architectures

Module 2

EfficientNet-B0


Conclusions – similar architectures

Intent Accuracy

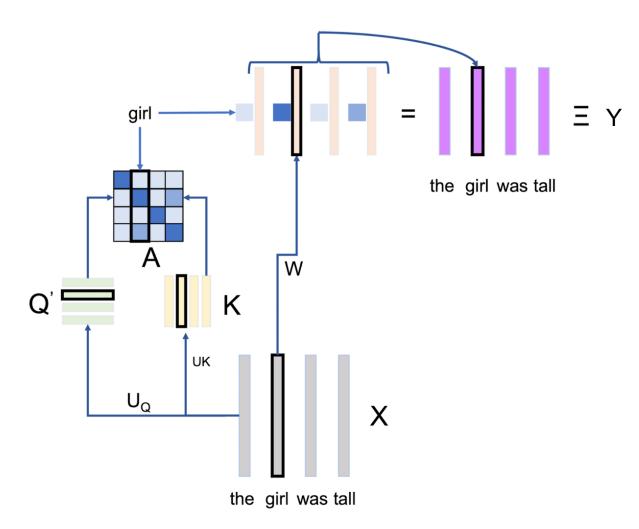
Model	# Param.	EN	ES	FR	DE	HI	JA	PT	TR	ZH	Avg
LSTM mBERT	28M 170M	$96.1 \\ 98.3$	93.0 $\underline{97.4}$	94.7 $\underline{98.6}$	94.0 $\underline{98.5}$	$\frac{84.5}{94.5}$	$\begin{array}{c} 91.2\\ \underline{98.6} \end{array}$	$\frac{92.7}{97.4}$	$\frac{81.1}{91.2}$	$92.5 \\ 97.5$	$\begin{array}{c}91.1\\\underline{96.9}\end{array}$
Transformer pQRNN	2M 2M _(8bit)	$96.8 \\ 98.0$	$92.1 \\ 97.0$	$\begin{array}{c} 93.1\\97.9\end{array}$	$\begin{array}{c} 93.2\\96.6\end{array}$	79.6 90.7	$90.7 \\ 88.7$	92.1 97.2	$\begin{array}{c} 78.3 \\ 86.2 \end{array}$	$\begin{array}{c} 88.1\\ 93.5\end{array}$	89.3 94.0
pNLP-Mixer	1M _(8bit)	98.1	97.1	98.1	97.3	90.7	92.3	97.2	87.3	95.1	94.8

Conclusions – closing the circle

Thank you!

MLP-mixer code

```
1 import einops
2 import flax.linen as nn
3 import jax.numpy as jnp
4
5 class MlpBlock(nn.Module):
    mlp_dim: int
6
    Qnn.compact
7
    def __call__(self, x):
8
    y = nn.Dense(self.mlp_dim)(x)
9
      y = nn.gelu(y)
10
     return nn.Dense(x.shape[-1])(y)
11
12
13 class MixerBlock(nn.Module):
    tokens_mlp_dim: int
14
    channels_mlp_dim: int
15
    Qnn.compact
16
    def __call__(self, x):
17
     y = nn.LayerNorm()(x)
18
    y = jnp.swapaxes(y, 1, 2)
19
     y = MlpBlock(self.tokens_mlp_dim, name='token_mixing')(y)
20
     y = jnp.swapaxes(y, 1, 2)
21
      x = x + y
22
     y = nn.LayerNorm()(x)
23
      return x+MlpBlock(self.channels_mlp_dim, name='channel_mixing')(y)
24
25
26 class MlpMixer(nn.Module):
    num_classes: int
27
    num blocks: int
28
    patch_size: int
29
    hidden_dim: int
30
    tokens_mlp_dim: int
31
    channels_mlp_dim: int
32
33
    Qnn.compact
   def __call__(self, x):
34
     s = self.patch_size
35
     x = nn.Conv(self.hidden_dim, (s,s), strides=(s,s), name='stem')(x)
36
     x = einops.rearrange(x, 'n h w c -> n (h w) c')
37
     for _ in range(self.num_blocks):
38
        x = MixerBlock(self.tokens_mlp_dim, self.channels_mlp_dim)(x)
39
      x = nn.LayerNorm(name='pre_head_layer_norm')(x)
40
      x = jnp.mean(x, axis=1)
41
      return nn.Dense(self.num_classes, name='head',
42
                      kernel init=nn.initializers.zeros)(x)
43
```


Convolutional Neural Networks (CNNs)

 → using dense matrix multiplication

- 2012 AlexNet
- 2015 State-of-the-art model using convolutions with small 3x3 kernels
- 2016 Skip-connections and batch normalization enabled very deep NNs
- 2016 Sparse convolutions together with depth-wise variants
- 2018 Augment CNNs with non-local operations
- 2019 Shared parameters in depth-wise convolutions for NLP

 matrix multiplications are applied
 row-wise or column-wise on the 'patches x features' input table

Attention-based Networks

$$\begin{split} Y &= WXA^T\\ A &= \operatorname{softmax}(\beta Q'K), \quad a_{st} \equiv \frac{e^{\beta [Q'K]_{st}}}{\sum_r e^{\beta [Q'K]_{sr}}}\\ &\rightarrow \beta: \text{ inverse temperature, e.g. } 1/\beta = \sqrt{q} \end{split}$$

 $\rightarrow\,$ each column is normalized to sum to 1

Computation cost

'patches x features' matrix $X \in \mathbb{R}^{S} \times \mathbb{R}^{C}$

MLP-mixer

$$\mathbf{U}_{*,i} = \mathbf{X}_{*,i} + \mathbf{W}_2 \,\sigma \big(\mathbf{W}_1 \,\text{LayerNorm}(\mathbf{X})_{*,i} \big), \quad \text{for } i = 1 \dots C,$$

$$\mathbf{Y}_{j,*} = \mathbf{U}_{j,*} + \mathbf{W}_4 \,\sigma \big(\mathbf{W}_3 \,\text{LayerNorm}(\mathbf{U})_{j,*} \big), \quad \text{for } j = 1 \dots S.$$

$$W_1 \in \mathbb{R}^{D_S \times S}$$
$$W_2 \in \mathbb{R}^{S \times D_S}$$
$$W_3 \in \mathbb{R}^{D_C \times C}$$
$$W_4 \in \mathbb{R}^{\mathbb{R}^{C \times D_C}}$$

Total cost: linear in #input_pixels

 $A = \operatorname{softmax}(\beta Q'K), \quad a_{st} \equiv \frac{e^{\beta[Q'K]_{st}}}{\sum_{r} e^{\beta[Q'K]_{sr}}}$ Feed Forward Network: $Y = WXA^{T}$ $Q \in \mathbb{R}^{C \times S}$ $K \in \mathbb{R}^{C \times S}$ $W \in \mathbb{R}^{M \times S}$ $Y_{t} = \sum_{s} a_{t,s}Wx^{t}$

Vision Transformer

Total cost: quadratic in #input_pixels

ETH zürich

Tolstikhin et al. [6] Vaswani et al. [8]

Sources

[1]: <u>https://medium.com/@deepanshut041/introduction-to-sift-scale-invariant-feature-transform-65d7f3a72d40</u>

[2]: <u>https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939</u>

[3]: Matthew D. Zeiler, Rob Fergus: Visualizing and Understanding Convolutional Networks. *arXiv preprint arXiv:1311.2901*, 2013.

[4]: Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. *arXiv preprint arXiv:2010.11929*, 2021.

[5]: <u>https://medium.com/analytics-vidhya/talented-mr-1x1-comprehensive-look-at-1x1-convolution-in-deep-learning-f6b355825578</u>

[6]: Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy: MLP-Mixer: An all-MLP Architecture for Vision. *arXiv preprint arXiv:2105.01601*, 2021.

[7]: <u>https://wandb.ai/wandb_fc/pytorch-image-models/reports/Is-MLP-Mixer-a-CNN-in-Disguise---</u> Vmlldzo4NDE1MTU#:~:text=(Body)%20Mixer%20Layer&text=If%20so%2C%20how%3F%22%20a,extreme%20case% 20of%20a%20CNN!

[8]: Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin: Attention Is All You Need. *arXiv preprint arXiv:1706.03762,* 2017.

Sources

[9]: Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: ImageNet Classification with Deep Convolutional Neural Networks. *NIPS*, 2012.

[10]: Wenling Shang, Kihyuk Sohn, Diogo Almeida, Honglak Lee: Enderstanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units. *arXiv preprint arXiv:1603.05201*, 2016.

[11]: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: Deep Residual Learning for Image Recognition. *arXiv* preprint arXiv:1512.03385, 2015.

[12]: Mingxing Tan, Quoc V. Le: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. *arXiv* preprint arXiv:1905.11946, 2019.

[13]: Francesco Fusco, Damian Pascual, Peter Staar, Diego Antognini: pNLP-Mixer: an Efficient all-MLP Architecture for Language. *arXiv preprint arXiv:2202.04350*, 2023.

[14]: Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, R. E. Howard, Wayne Hubbard, Lawrence D. Jackel: Backpropagation Applied to Handwritten Zip Code Recognition. *Neural Computation*, 1(4):541-551, 1989.

ETH zürich

Lara Nonino Inonino@student.ethz.ch

Seminar in Deep Neural Networks (FS 2024)