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Chapter 3  

Tree Algorithms 

Section 3.1: Broadcast 
 
Definition 3.1 [Broadcast]: A broadcast operation is initiated by a single processor, the source. 
The source wants to send a message to all other nodes in the system. 
 
Definition 3.2 [Distance, Radius, Diameter]: The distance between two nodes u, v in an 
undirected graph is the number of hops of a minimum path between u and v. The radius of a 
node u in a graph is the maximum distance between u and any other node. The radius of a 
graph is the minimum radius of any node in the graph. The diameter of a graph is the 
maximum distance between two arbitrary nodes. 
 
Remarks: 

• The diameter is about twice the radius. 
• Kevin Bacon, Paul Erdös, etc. 

 
Theorem 3.3 [Lower Bound]: The message complexity of a broadcast is at least n-1. The 
radius of the graph is a lower bound for the time complexity. 
 
Proof: Every node must receive the message.  
 
Remarks: 

• You can use a pre-computed spanning tree to do the broadcast with tight message 
complexity. 

• If the spanning tree is a breadth-first spanning tree (for a given source), then also the 
time complexity is tight. 

 
Definition 3.4 [Clean]: A graph (system/network) is clean if the nodes do not know the 
topology of the graph. 
 
Theorem 3.5 [Clean Lower Bound]: For a clean network, the number of edges is a lower 
bound for the broadcast message complexity. 
 
Proof: If you do not try every edge, you might miss a whole part of the graph behind it. 
 
Algorithm 3.6 [Flooding]: The source sends the message to all neighbors. Each node 
receiving the message the first time forwards to all (other) neighbors. 
 
Remarks: 

• If node v receives the message first from node u, then node v calls node u “parent”. 
This parent relation defines a spanning tree T. If the flooding algorithm is executed in 
a synchronous system, then T is a breadth-first spanning tree (with respect to the root). 
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• More interestingly, also in asynchronous systems the flooding algorithm terminates 
after r time units, where r is the radius of the source. (But note that the constructed 
spanning tree needs not be breadth-first.) 

 

Section 3.2: Convergecast 
 
(Broadcast: Termination detection) 
(Broadcast with echo) 
(Same as broadcast, just reverse) 
 
Algorithm 3.7 [Echo]: Leaves send an ACK back to their parent. If a node has received 
ACKs from all children (all but the parent neighbor), it sends an ACK to the parent node. 
 
Remarks: 

• Message complexity of Echo is n-1, but together with flooding still O(|E|). 
• Time complexity = radius (depth) of the spanning tree of the flooding algorithm. 
• Very important remark: The flooding/echo (or broadcast/echo) algorithm can do much 

more than just collecting ACKS:  
o Example 1: Compute sum of values stored at nodes in the system.  
o Example 2: Find the maximum identifier for leader election. Root?!? 
o Example 3: Compute a route-disjoint matching. 

• How does one compute a breadth-first tree in the asynchronous model?  
 

Section 3.3: BFS Tree Construction 
 
(Flooding was good solution for synchronous system) 
(Two basic sequential algorithms: Dijkstra & Bellman-Ford) 
 
(Dijkstra: Always add closest new node  develop BFS tree layer by layer) 
 
Algorithm 3.8 [Dijkstra BFS tree]: The algorithm proceeds in phases. In phase p the nodes 
with distance p to the root are detected. Tp is the tree in phase p. We start with T1 which is the 
root plus all direct neighbors of the root. Each phase is as follows: 

• The root starts phase p by broadcasting “start p” within Tp.  
• When receiving “start p” a “new leaf” node u of Tp (“new leaf” = a node that was 

newly discovered in the last phase) sends a “join p+1” message to all quiet neighbors. 
(A neighbor v is quiet if u has not yet received a message from v.) 

• A node v receiving the first “join p+1” message replies with “ack” and becomes a 
leave of the tree Tp+1. 

• A node v receiving any further “join” message replies with “nack”. 
• The leaves of Tp collect all the answers of their neighbors; then the leaves start the 

echo algorithm back to the root. 
• When the echo is terminated at the root, the root starts phase p+1, unless there was no 

new node detected. 
 
Theorem 3.9 [Analysis of Algorithm 3.8]: The time complexity of Algorithm 3.8 is O(D2), 
the message complexity is O(|E|+nD), where D is the diameter of the graph.  
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Proof: The broadcast & echo algorithm in Tp needs at most time 2D. Finding new neighbors at 
the leaves costs time 2. Since the BFS tree height is bounded by the diameter we have D 
phases, giving a total time complexity of O(D2). Each node participating in broadcast & echo 
only receives (broadcast) at most 1 message and sends (echo) at most 1. Since there are D 
phases, the cost is bounded by O(nD). On each edge there are at most 2 “join” messages. 
Replies to a “join” request are answered by 1 “ack” or “nack”, which means that we have at 
most 4 additional messages per edge. Therefore the message complexity is O(|E|+nD). 
 
(Bellman-Ford: Simply flood the network with a number-of-hops counter in each message) 
 
Algorithm 3.10 [Bellman-Ford BFS tree]: Use a variant of the flooding algorithm. Each node 
and each message store an integer which corresponds to the distance from the root. The root 
stores 0, every other node initially ∞. The root starts the flooding algorithm by sending a 
message “1” to all neighbors. 

• A node u with integer x receives a message “y” from a neighbor v: if y < x then node u 
stores y (instead of x) and sends “y+1” to all neighbors (except v).   

 
Theorem 3.11 [Analysis of Algorithm 3.10]: The time complexity of Algorithm 3.10 is O(D), 
the message complexity is O(n|E|), where D is the diameter of the graph. 
 
Proof: We can prove the time complexity by induction. We claim that a node at distance d 
from the root has received a message “d” by time d. The root knows by time 0 that it is the 
root. A node v at distance d has a neighbor u at distance d-1. Node u by induction sends a 
message “d” to v at time d-1 or before, which is then received by v at time d or before. 
Message complexity is easier: A node can reduce its integer at most n-1 times; each of these 
times it sends a message to all it neighbors. If all nodes do this we have O(n|E|) messages. 
 
Remarks: 

• There are graphs and executions that produce O(n|E|) messages. 
• How does the algorithm terminate? 
• Algorithm 3.8 has the better message complexity; algorithm 3.10 has the better time 

complexity. The currently best known algorithm has message complexity O(|E|+n log3 
n) and time complexity O(D log3 n). 

• How do we find the root?!? Leader election in an arbitrary graph: FloodMax algorithm. 
Termination? Idea: Each node that believes to be the “max” builds a spanning tree… 
(More for example in Chapter 15 of Nancy Lynch “Distributed Algorithms”) 

 
 
 


