ETHZ, Summer 2003

Principles of Distributed Computing Christian Cachin (www.zurich.ibm.com/~cca)

7 Quorum Systems

7.1 Introduction

Motivation. Replicate an object on n servers in order to tolerate faulty servers. The servers communicate by sending messages over an asynchronous point-to-point network. Define quorums of servers such that a client needs only talk to a quorum of servers for accessing the object.

Definition 7.1 (Quorum System). Let $\mathcal{P} = \{P_1, \ldots, P_n\}$ be a set of servers. A *quorum system* $\mathcal{Q} \subset 2^{\mathcal{P}}$ is a set of subsets of \mathcal{P} such that every two subsets intersect. Each $Q \in \mathcal{Q}$ is called a *quorum*.

W.l.o.g., quorum systems considered here are minimal, i.e., for any $Q, Q' \in \mathcal{Q} : Q \not\subseteq Q'$.

Algorithm 7.2 (Replicated Read-Write Register). A variable x is stored in the system; clients are a reader and a writer who maintains a timestamp τ . Every server P_i stores local copies x_i and τ_i .

- To write x, the writer picks a quorum Q, increments τ , and sends (write, x, τ) to all $P_i \in Q$; upon receiving (write, x, τ) with $\tau > \tau_i$, server P_i sets $(x_i, \tau_i) \leftarrow (x, \tau)$ and returns an ack message; the writer waits for ack from all servers in Q before terminating the write.
- To read x, the reader picks a quorum Q and sends a read message to all $P_i \in Q$; upon receiving the read query, P_i returns (value, x_i, τ_i), the reader waits for values from all servers in Q and selects the one with the highest timestamp.

The algorithm works only for a single reader and for a single writer, which must not fail (why?). The message complexity of every operation is 2|Q|.

Lemma 7.3. A quorum system implements a single-reader single-writer read/write register in an asynchronous network.

Proof. The quorum used by the writer has non-empty intersection with the quorum used by the reader. \Box

7.2 Example Quorum Systems

Singleton. $\mathcal{Q} = \{\{P_1\}\}.$

Majority. $\mathcal{P} = \{P_1, \ldots, P_n\}$ and $\mathcal{Q} = \{Q \subset \mathcal{P} | |Q| = \lceil \frac{n+1}{2} \rceil\}$; tolerates $t < \frac{n}{2}$ faulty servers. Generalization to *weighted majority* by assigning multiple "votes" to some servers.

Grid. Suppose $n = k \cdot k$ and arrange the servers in a square; a quorum is a full row and one element from each row below the full row.

A grid quorum on n = 25 elements.

Finite Projective Planes (FPP) [Mae85]. Suppose $n = q^2 + q + 1$ for a prime power q; then there is a finite projective plane on n elements, which consists of a set of subsets from \mathcal{P} such that every subset has exactly q+1 elements, every element is contained in exactly q+1 subsets, and every two subsets intersect in exactly one element.

The finite projective plane of order 2 ("Fano plane").

B-Grid [NW98]. Suppose n = dhr and arrange the elements in a grid with d columns and $h \cdot r$ rows. Call every group of r rows a *band* and call r elements in a column restricted to a band a *mini-column*. A quorum consists of one mini-column in every band and one element from each mini-column of one band; thus, every quorum has d + hr - 1 elements.

The B-Grid quorum system over n = 120 elements with d = 12 columns, h = 5 bands, and r = 2 rows per band.

7.3 Measures on Quorum Systems

The load is a property of the quorum system; it is defined as the fraction of time that the *busiest* server is in use under an *optimal* strategy of accessing the servers.

Definition 7.4 (Load). An access strategy W is a random variable on a quorum system Q, i.e., $\sum_{Q \in Q} P_W(Q) = 1$. The load induced by W on a server P_i is

$$\ell_W(i) = \sum_{Q \in \mathcal{Q}: i \in Q} P_W(Q).$$

The load induced by W on Q is

$$L_W(\mathcal{Q}) = \max_{P_i \in \mathcal{P}} \ell_W(i).$$

The [system] load of Q is

$$L(\mathcal{Q}) = \min_{W} L_W(\mathcal{Q}).$$

Let c(Q) denote the size of the smallest quorum of a quorum system Q.

Theorem 7.5 ([NW98]). $L(\mathcal{Q}) \ge \max\left\{\frac{1}{c(\mathcal{Q})}, \frac{c(\mathcal{Q})}{n}\right\}$. Consequently, $L(\mathcal{Q}) \ge \frac{1}{\sqrt{n}}$.

Resilience is a worst-case measure for the fault-tolerance of a quorum system, defined as the maximum number of faulty servers that the quorum system can tolerate.

Definition 7.6 (Resilience). The *resilience* R(Q) of a quorum system is the largest f such that for all sets $F \subset P$ of cardinality f, there is at least one quorum $Q \in Q$ which has no common element with F.

Clearly, the resilience is at most c(Q) - 1.

An average-case measure for fault-tolerance is the failure probability. Assume that every server P_i fails independently with probability p; let FAIL(i) denote the event that P_i fails.

Definition 7.7 (Failure probability). The *failure probability* of a quorum system Q is the probability that at least one server of every quorum fails, i.e.,

 $F_p(\mathcal{Q}) = \Pr[\forall Q \in \mathcal{Q} : \exists P_i \in Q \text{ such that } FAIL(i)].$

Definition 7.8 (*s*-uniform). A quorum system Q is *s*-uniform if every quorum in Q has exactly *s* elements.

Definition 7.9 (balanced). An access strategy W for a quorum system Q is *balanced* if it satisfies $\ell_W(i) = L$ for all $P_i \in \mathcal{P}$.

Lemma 7.10. An *s*-uniform quorum system Q with a balanced access strategy has load $L(Q) = L = \frac{s}{n}$. Moreover, this load is optimal.

Proof. [NW98, Proposition 4.8].

Lemma 7.11. The B-Grid quorum system has load $\frac{d+hr-1}{dhr}$, resilience $\max\{d-1, hr-1\}$, and failure probability at most $(dp^r)^h + h(1-(1-p)^r)^d$. For $d = \sqrt{n}$, $r = \lfloor \ln d \rfloor$, and $0 \le p \le \frac{1}{3}$, we have $L(B\text{-}Grid) = O(\frac{1}{\sqrt{n}})$, $R(B\text{-}Grid) = O(\sqrt{n})$, and $F_p(B\text{-}Grid) = O(e^{-\frac{n^{1/4}}{2}})$.

Proof. Load follows from Lemma 7.10 since B-Grid is (d + hr - 1)-uniform. Define \mathcal{E}_1 to be the event that *in every band, all elements of some mini-column fail,* and \mathcal{E}_2 the event that *in some band, at least one element of every mini-column fails.* Clearly, the system fails when $\mathcal{E}_1 \vee \mathcal{E}_2$ and thus

$$F_p(\mathbf{B}\operatorname{-Grid}) \leq \Pr[\mathcal{E}_1] + \Pr[\mathcal{E}_2] = (dp^r)^h + h(1 - (1 - p)^r)^d.$$

Comparison.

$\mathcal Q$	$L(\mathcal{Q})$	$R(\mathcal{Q})$	$F_p(\mathcal{Q})$
Singleton	1	0	p
Majority	$\frac{1}{2}$	$\lfloor \frac{n-1}{2} \rfloor$	$e^{-\Omega(n)}$
Grid	$O(\frac{1}{\sqrt{n}})$	$\sqrt{n}-1$	$\approx 1^*$
FPP	$O(\frac{1}{\sqrt{n}})$	q	$\approx 1^*$
B-Grid ⁺	$O(\frac{1}{\sqrt{n}})$	$O(\sqrt{n})$	$O(e^{-\frac{n^{1/4}}{2}})$
* for large <i>n</i> .			
⁺ for $d = \sqrt{n}$, $r = \lfloor \ln d \rfloor$, and $0 \le p \le \frac{1}{3}$.			

Only the B-Grid quorum system achieves optimal and close-to-optimal values of all three measures.

References

- [Mae85] M. Maekawa, $A \sqrt{N}$ alrorithm for mutual exclusion in distributed systems, ACM Transactions on Computer Systems **3** (1985), no. 2, 145–159.
- [NW98] M. Naor and A. Wool, *The load, capacity and availability of quorum systems*, SIAM Journal on Computing **27** (1998), no. 2, 423–447.