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Lower Bound

• The network on the right
constructs a lower bound.

• The destination is the
center of the circle, 
the source any node
on the ring.

• Finding the right chain
costs Ω(c*2), 
even for randomized
algorithms

• Theorem: 
AFR is asymptotically optimal.
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Non-geometric routing algorithms

• In the Ω(1) model, a standard flooding algorithm enhanced with trick 
1 will (for the same reasons) also cost O(c*2). 

• However, such a flooding algorithm needs O(1) extra storage at 
each node (a node needs to know whether it has already forwarded
a message).

• Therefore, there is a trade-off between O(1) storage at each node or 
that nodes are location aware, and also location aware about the
destination. This is intriguing.
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GOAFR – Greedy Other Adaptive Face Routing
• Back to geometric routing…
• AFR Algorithm is not very efficient (especially in dense graphs)
• Combine Greedy and (Other Adaptive) Face Routing

– Route greedily as long as possible
– Circumvent “dead ends” by use of face routing
– Then route greedily again
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GOAFR+

• GOAFR+ improvements:
– Early fallback to greedy routing
– (Circle centered at destination instead of ellipse)
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GOAFR+ ― Early Fallback

• We could fall back to greedy routing as soon as we are closer to t 
than the local minimum

• But:

• “Maze” with Ω(c*2) edges is traversed Ω(c*) times → Ω(c*3) steps
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GOAFR – Greedy Other Adaptive Face Routing

• Early fallback to greedy routing:
– Use counters p and q. Let u be the node where the exploration of the 

current face F started
• p counts the nodes closer to t than u
• q counts the nodes not closer to t than u

– Fall back to greedy routing as soon as p > σ · q (constant σ > 0)

Theorem: GOAFR is still asymptotically worst-case optimal…
…and it is efficient in practice, in the average-case. 

• What does “practice” mean?
– Usually nodes placed uniformly at random
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Average Case

• Not interesting when graph not dense enough
• Not interesting when graph is too dense
• Critical density range (“percolation”)

– Shortest path is significantly longer than Euclidean distance

too sparse too densecritical density
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Simulation on Randomly Generated Graphs

AFR

GOAFR+
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A Word on Performance

• What does a performance of 3.3 in the critical density range mean?

• If an optimal path (found by Dijkstra) has cost c, 
then GOAFR+ finds the destination in 3.3·c steps.

• It does not mean that the path found is 3.3 times as long as the 
optimal path! The path found can be much smaller…

• Remarks about cost metrics 
– In this lecture “cost” c = c hops
– There are other results, for instance on distance/energy/hybrid metrics
– In particular: With energy metric there is no competitive geometric 

routing algorithm
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Energy Metric Lower Bound

Example graph: k “stalks”, of which only one leads to t
– any deterministic (randomized)

geometric routing algorithm A has
to visit all k (at least k/2) “stalks”

– optimal path has constant cost c*

(covering a constant distance at
almost no cost)

w’
t

d

d
u1 w s

1

v1
1<D<2<

→ With energy metric there is no competitive geometric routing algorithm
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Milestones in Geometric Routing

Currently best algorithm, other 
cost metrics, etc.

GOAFR+PODC 
2003 

Kuhn, Wattenhofer, 
Zhang, Zollinger

Worst-case optimal and average-
case efficient, percolation theory

GOAFRMobiHoc 
2003

Kuhn, Wattenhofer, 
Zollinger

First worst-case analysis. Tight 
Θ(c2) bound.

AFRDialM
2002

Kuhn, Wattenhofer, 
Zollinger

A new name for GFGGPSRMobiCom
2000

Karp, Kung

First average-case efficient
algorithm (simulation but no proof)

GFGDialM
1999

Bose, Morin, 
Stojmenovic, Urrutia

First correct algorithmFace 
Routing

CCCG 
1999

Kranakis, Singh, 
Urrutia

Geometric Routing proposedMFR et 
al.

Various 
1975ff

Kleinrock et al.
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Overview – Topology Control

• What is Topology Control?

• Explicit interference model

• Interference in known topologies

• Algorithms
– Connectivity-preserving and spanner topologies
– Worst case, average case
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Topology Control

• Drop long-range neighbors: Reduces interference and energy!
• But still stay connected (or even spanner)
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Topology Control as a Trade-Off

Network Connectivity
Spanner Property

Topology Control

Conserve Energy
Reduce Interference

Sometimes also clustering, 
Dominating Set construction

Covered in earlier chapter

d(u,v) · t ≥ dTC(u,v) 

Really?!?
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Explicit interference [Meyer auf der Heide et al. SPAA 2002]
– Interference between edges, time-step routing model, congestion
– Trade-offs: congestion, power consumption, dilation

– Interference model based on network traffic

Implicit Interference Reduction

Interference issue “solved”
implicitly by graph sparseness
or bounded degree
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What Is Interference?

• Model
– Transmitting edge e = (u,v) disturbs all nodes in vicinity
– Interference of edge e = 

# Nodes covered by union of the two circles 
with center u and v, respectively, and radius |e|

• Problem statement
– We want to minimize maximum interference!

– At the same time topology must be
connected or a spanner etc. 8

Exact size of interference range
does not change the results
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Low Node Degree Topology Control?

Low node degree does not necessarily imply low interference:

Very low node degree
but huge interference
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Let’s Study the Following Topology!

…from a worst-case perspective
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Topology Control Algorithms Produce…

• All known topology control algorithms (with symmetric edges) 
include the nearest neighbor forest as a subgraph and produce 
something like this:

• The interference of this 
graph is Ω(n)!

Distributed Computing Group    MOBILE COMPUTING R. Wattenhofer 7/44

But Interference…

• Interference does not need to be high…

• This topology has interference O(1)!!
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Interference-Optimal Topology

There is no local algorithm
that can find a good
interference topology

The optimal topology
will not be planar
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Algorithms – Requirement: Retain Graph Connectivity

• LIFE (Low Interference Forest
Establisher)

• Attribute interference values as
weights to edges

• Compute minimum spanning
tree/forest (Kruskal’s algorithm)

Theorem: LIFE constructs a
Minimum Interference Forest

Proof:
• Algorithm computes forest
• MST also minimizes

maximum interference value
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Algorithms – Requirement: Construct Spanner

• LISE (Low Interference 
Spanner Establisher)

• Add edges with increasing 
interference until spanner 
property fulfilled

Theorem: LISE constructs a
Minimum Interference t-Spanner

Proof:
• Algorithm computes t-spanner
• Algorithm inserts edges with

increasing coverage only
“as long as necessary”
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Algorithms – Requirement: Construct Spanner Locally

• LLISE
• Local algorithm: scalable
• Nodes collect

(t/2)-neighborhood
• Locally compute interference-

minimal paths guaranteeing 
spanner property

• Only request that path to stay 
in the resulting topology

Theorem: LLISE constructs a
Minimum Interference t-Spanner
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Average-Case Interference: Spanners
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Simulation

UDG, I = 50 RNG, I = 25

LLISE2, I = 23 LLISE10, I = 12
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Overview – Lightweight Topology Control

• Topology Control commonly assumes that the node positions are 
known.

• What if we do not have access to position information?

• XTC algorithm

• XTC analysis
– Worst case
– Average case
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XTC Algorithm

• Each node produces 
“ranking” of neighbors. 

• Examples
– Distance (closest)
– Energy (lowest)
– Link quality (best)

• Not necessarily depending 
on explicit positions

• Nodes exchange rankings 
with neighbors

C

D

E

F

A

1. C
2. E
3. B
4. F
5. D
6. G

B G
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XTC Algorithm (Part 2)

• Each node locally goes 
through all neighbors in 
order of their ranking

• If the candidate (current 
neighbor) ranks any of 
your already processed 
neighbors higher than 
yourself, then you do not 
need to connect to the 
candidate.

A

B
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D

E

F

G

1. C
2. E
3. B
4. F
5. D
6. G

1. F
3. A
6. D

7. A
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3. E
7. A

2. C
4. G
5. A

3. B
4. A
6. G
8. D

4. B
6. A
7. C
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XTC Analysis (Part 1)

• Symmetry: A node u wants a node v as a neighbor if and only if v 
wants u.

• Proof:
– Assume 1) u → v and 2) u ← v
– Assumption 2) ⇒ ∃w: (i) w ≺v u and (ii) w ≺u v

Contradicts Assumption 1)

Distributed Computing Group    MOBILE COMPUTING R. Wattenhofer 7/56

XTC Analysis (Part 1)

• Symmetry: A node u wants a node v as a neighbor if and only if v 
wants u.

• Connectivity: If two nodes are connected originally, they will stay so 
(provided that rankings are based on symmetric link-weights).

• If the ranking is energy or link quality based, then XTC will choose a 
topology that routes around walls and obstacles.
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XTC Analysis (Part 2)

• If the given graph is a Unit Disk Graph (no obstacles, nodes 
homogeneous, but not necessarily uniformly distributed), then …

• The degree of each node is at most 6.
• The topology is planar.
• The graph is a subgraph of the RNG.

• Relative Neighborhood Graph RNG(V):
• An edge e = (u,v) is in the RNG(V) iff

there is no node w with (u,w) < (u,v) 
and (v,w) < (u,v).

vu

Distributed Computing Group    MOBILE COMPUTING R. Wattenhofer 7/58

Unit Disk Graph XTC

XTC Average-Case
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XTC Average-Case (Stretch Factor)
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