

- The network on the right constructs a lower bound.
- The destination is the center of the circle, the source any node on the ring.
- Finding the right chain costs $\Omega(c^{*2})$. even for randomized algorithms
- Theorem: AFR is asymptotically optimal.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

GOAFR - Greedy Other Adaptive Face Routing

- Back to geometric routing...
- AFR Algorithm is not very efficient (especially in dense graphs)
- Combine Greedy and (Other Adaptive) Face Routing
 - Route greedily as long as possible Other AFR: In each
 - Circumvent "dead ends" by use of face routing face proceed to node

Non-geometric routing algorithms

- In the $\Omega(1)$ model, a standard flooding algorithm enhanced with trick 1 will (for the same reasons) also cost O(c*2).
- · However, such a flooding algorithm needs O(1) extra storage at each node (a node needs to know whether it has already forwarded a message).
- Therefore, there is a trade-off between O(1) storage at each node or • that nodes are location aware, and also location aware about the destination. This is intriguing.

7/25

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

7/26

GOAFR+

- GOAFR+ improvements:
 - Early fallback to greedy routing
 - (Circle centered at destination instead of ellipse)

GOAFR+ — Early Fallback

- We could fall back to greedy routing as soon as we are closer to t than the local minimum
- But:

• "Maze" with $\Omega(c^{*2})$ edges is traversed $\Omega(c^{*})$ times $\rightarrow \Omega(c^{*3})$ steps

X	
80	
1	
H	

```
Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/29
```

Average Case

- Not interesting when graph not dense enough
- Not interesting when graph is too dense
- Critical density range ("percolation")
 - Shortest path is significantly longer than Euclidean distance

Č

GOAFR – Greedy Other Adaptive Face Routing

- Early fallback to greedy routing:
 - Use counters p and q. Let u be the node where the exploration of the current face F started
 - $\ensuremath{\mathsf{p}}$ counts the nodes closer to t than $\ensuremath{\mathsf{u}}$
 - q counts the nodes not closer to t than u
 - Fall back to greedy routing as soon as $p > \sigma \cdot q$ (constant $\sigma > 0$)

Theorem: GOAFR is still asymptotically worst-case optimal... ...and it is efficient in practice, in the average-case.

What does "practice" mean? – Usually nodes placed uniformly at random

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

7/30

Simulation on Randomly Generated Graphs

7/31

A Word on Performance

- What does a performance of 3.3 in the critical density range mean?
- If an optimal path (found by Dijkstra) has cost c, then GOAFR+ finds the destination in 3.3.c steps.
- It does *not* mean that the *path* found is 3.3 times as long as the optimal path! The path found can be much smaller...
- · Remarks about cost metrics
 - In this lecture "cost" c = c hops
 - There are other results, for instance on distance/energy/hybrid metrics
 - In particular: With energy metric there is no competitive geometric routing algorithm

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Milestones in Geometric Routing

Kleinrock et al.	Various 1975ff	MFR et al.	Geometric Routing proposed
Kranakis, Singh, Urrutia	CCCG 1999	Face Routing	First correct algorithm
Bose, Morin, Stojmenovic, Urrutia	DialM 1999	GFG	First average-case efficient algorithm (simulation but no proof)
Karp, Kung	MobiCom 2000	GPSR	A new name for GFG
Kuhn, Wattenhofer, Zollinger	DialM 2002	AFR	First worst-case analysis. Tight $\Theta(c^2)$ bound.
Kuhn, Wattenhofer, Zollinger	MobiHoc 2003	GOAFR	Worst-case optimal and average- case efficient, percolation theory
Kuhn, Wattenhofer, Zhang, Zollinger	PODC 2003	GOAFR+	Currently best algorithm, other cost metrics, etc.

7/33

Energy Metric Lower Bound

Example graph: k "stalks", of which only one leads to t

any deterministic (randomized) geometric routing algorithm A has to visit all k (at least k/2) "stalks"
optimal path has constant cost c^{*} (covering a constant distance at almost no cost) d.
Image: the state of the state of

Overview – Topology Control

- What is Topology Control?
- Explicit interference model
- · Interference in known topologies
- Algorithms
 - Connectivity-preserving and spanner topologies
 - Worst case, average case

Low Node Degree Topology Control? Let's Study the Following Topology! ... from a worst-case perspective Low node degree does not necessarily imply low interference: Very low node degree but huge interference Distributed Computing Group MOBILE COMPUTING R. Wattenhofer Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/41 7/42 Topology Control Algorithms Produce... But Interference... >0 • All known topology control algorithms (with symmetric edges) • Interference does not need to be high... include the nearest neighbor forest as a subgraph and produce something like this: The interference of this • graph is $\Omega(n)!$ This topology has interference O(1)!!

Interference-Optimal Topology

Algorithms – Requirement: Construct Spanner

- LISE (Low Interference Spanner Establisher)
- Add edges with increasing • interference until spanner property fulfilled

Theorem: LISE constructs a Minimum Interference t-Spanner

Proof:

- Algorithm computes t-spanner
- · Algorithm inserts edges with increasing coverage only "as long as necessary"

Low Interference Spanner Establisher (LISE)

Input: a set of nodes V, each $v \in V$ having attributed a maximum transmission radius r max

- 1: E = all eligible edges (u, v) $(r_u^{max} > |u, v|$ and $r_v^{max} > |u, v|$) (* unprocessed edges *) 2: $E_{LISE} = \emptyset$
- 3: $G_{LISE} = (V, E_{LISE})$
- 4: while $E \neq \emptyset$ do
- 5: $e = (u, v) \in E$ with maximum coverage
 - while $|p^*(u,v)$ in $G_{LISE}| > t |u,v|$ do
- 7: $f = edge \in E$ with minimum coverage move all edges $\in E$ with coverage Cov(f) to E_{LISE}
- end while 9.
- 10: $E = E \setminus \{e\}$

6:

- 11: end while
- Output: Graph G_{LISE}

Algorithms – Requirement: Retain Graph Connectivity

- LIFE (Low Interference Forest Establisher)
- · Attribute interference values as weights to edges
- Compute minimum spanning tree/forest (Kruskal's algorithm)

Theorem: LIFE constructs a Minimum Interference Forest

Proof:

- · Algorithm computes forest
- MST also minimizes maximum interference value

- **Input:** a set of nodes V, each $v \in V$ having attributed a maximum transmission radius rmax
- 1: E = all eligible edges (u, v) $(r_u^{max} \ge |u, v|$ and $r_v^{max} \ge |u, v|$) (* unprocessed edges *)
- 2: $E_{LIFE} = \emptyset$
- 3: $G_{LIFE} = (V, E_{LIFE})$
- 4: while $E \neq \emptyset$ do
- $e = (u, v) \in E$ with minimum coverage

7/46

- 6: if u, v are not connected in G_{LIFE} then $E_{LIFE} = E_{LIFE} \cup \{e\}$ 7:
- end if 8: $E = E \setminus \{e\}$ 9:
- 10: end while
- Output: Graph G_{LIFE}

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Algorithms – Requirement: Construct Spanner Locally

- LLISE
- Local algorithm: scalable
- Nodes collect (t/2)-neighborhood
- · Locally compute interferenceminimal paths guaranteeing spanner property
- Only request that path to stay in the resulting topology

Theorem: LLISE constructs a Minimum Interference t-Spanner

LLISE

- 1: collect $(\frac{l}{2})$ -neighborhood $G_N = (V_N, E_N)$ of $G = (\overline{V}, E)$
- 2: $E' = \emptyset$
- 3: $G' = (V_N, E')$
- 4: repeat
- $f = edge \in E_N$ with minimum coverage 6: move all edges $\in E_N$ with coverage
- Cov(f) to E'
- 7: p = shortestPath(u v) in G'
- 8: **until** $|p| \le t |u, v|$
- 9: inform all edges on p to remain in the resulting topology.
 - Note: $G_{LL} = (V, E_{LL})$ consists of all edges eventually informed to remain in the resulting topology.

7/47

Distributed Computing G

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/56

XTC Analysis (Part 2)

- If the given graph is a Unit Disk Graph (no obstacles, nodes homogeneous, but not necessarily uniformly distributed), then ...
- The degree of each node is at most 6. ٠
- The topology is planar. ٠
- The graph is a subgraph of the RNG. •
- Relative Neighborhood Graph RNG(V): ٠
- An edge e = (u,v) is in the RNG(V) iff ٠ there is no node w with (u,w) < (u,v)and (v,w) < (u,v).

7/57

7/59

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

XTC Average-Case

Unit Disk Graph

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

XTC Average-Case (Stretch Factor)

7/58

