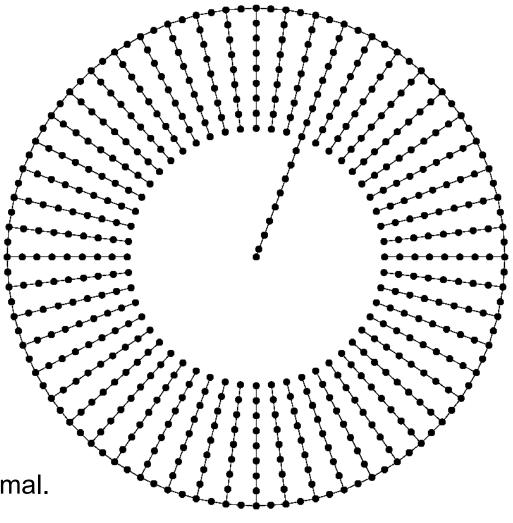
#### **Lower Bound**

 The network on the right constructs a lower bound.

 The destination is the center of the circle, the source any node on the ring.

Finding the right chain costs Ω(c\*2), even for randomized algorithms

 Theorem: AFR is asymptotically optimal.





#### Non-geometric routing algorithms

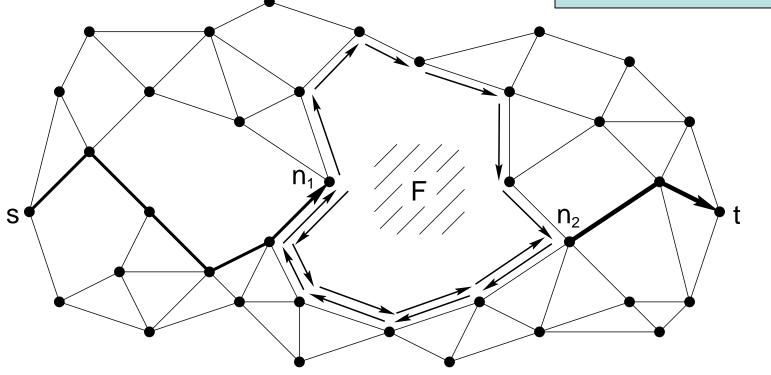
- In the  $\Omega(1)$  model, a standard flooding algorithm enhanced with trick 1 will (for the same reasons) also cost  $O(c^{*2})$ .
- However, such a flooding algorithm needs O(1) extra storage at each node (a node needs to know whether it has already forwarded a message).
- Therefore, there is a trade-off between O(1) storage at each node or that nodes are location aware, and also location aware about the destination. This is intriguing.



#### GOAFR – Greedy Other Adaptive Face Routing

- Back to geometric routing...
- AFR Algorithm is not very efficient (especially in dense graphs)
- Combine Greedy and (Other Adaptive) Face Routing
  - Route greedily as long as possible
  - Circumvent "dead ends" by use of face routing
  - Then route greedily again

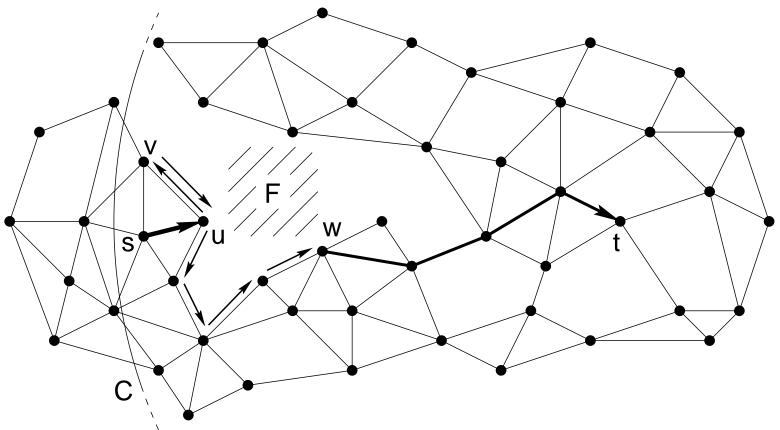
Other AFR: In each face proceed to node closest to destination





#### **GOAFR+**

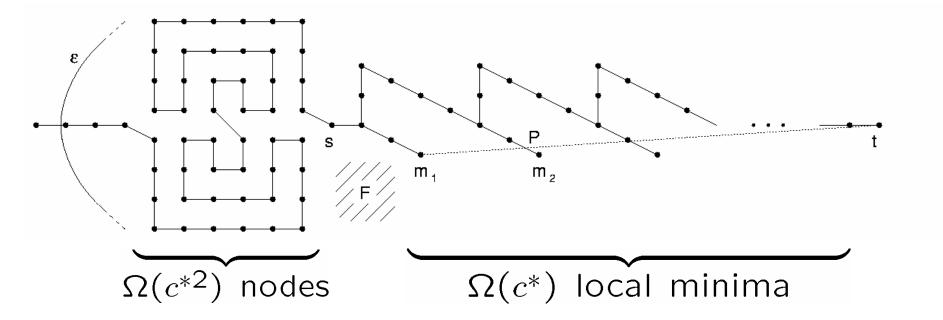
- GOAFR+ improvements:
  - Early fallback to greedy routing
  - (Circle centered at destination instead of ellipse)





#### GOAFR+ — Early Fallback

- We could fall back to greedy routing as soon as we are closer to t than the local minimum
- But:



• "Maze" with  $\Omega(c^{*2})$  edges is traversed  $\Omega(c^*)$  times  $\to \Omega(c^{*3})$  steps



#### GOAFR – Greedy Other Adaptive Face Routing

- Early fallback to greedy routing:
  - Use counters p and q. Let u be the node where the exploration of the current face F started
    - p counts the nodes closer to t than u
    - q counts the nodes not closer to t than u
  - Fall back to greedy routing as soon as  $p > \sigma \cdot q$  (constant  $\sigma > 0$ )

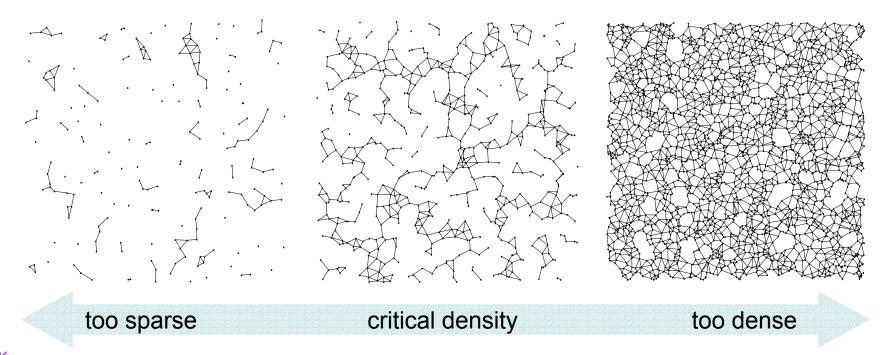
Theorem: GOAFR is still asymptotically worst-case optimal... ... and it is efficient in practice, in the average-case.

- What does "practice" mean?
  - Usually nodes placed uniformly at random



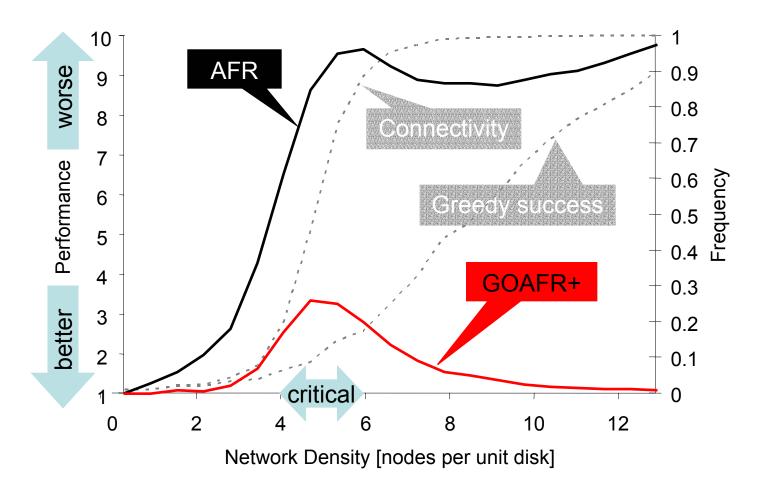
#### **Average Case**

- Not interesting when graph not dense enough
- Not interesting when graph is too dense
- Critical density range ("percolation")
  - Shortest path is significantly longer than Euclidean distance





#### Simulation on Randomly Generated Graphs





#### A Word on Performance

- What does a performance of 3.3 in the critical density range mean?
- If an optimal path (found by Dijkstra) has cost c, then GOAFR+ finds the destination in 3.3.c steps.
- It does *not* mean that the *path* found is 3.3 times as long as the optimal path! The path found can be much smaller...
- Remarks about cost metrics
  - In this lecture "cost" c = c hops
  - There are other results, for instance on distance/energy/hybrid metrics
  - In particular: With energy metric there is no competitive geometric routing algorithm

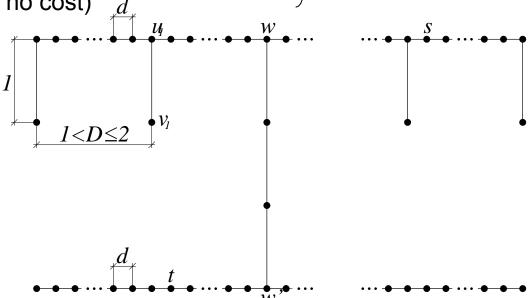


#### **Energy Metric Lower Bound**

Example graph: k "stalks", of which only one leads to t

- any deterministic (randomized) geometric routing algorithm A has to visit all k (at least k/2) "stalks"
- optimal path has constant cost c\* (covering a constant distance at almost no cost)

$$\lim_{k\to\infty} \frac{c(A)}{c^*} = \infty$$



With energy metric there is no competitive geometric routing algorithm

# Milestones in Geometric Routing

| Kleinrock et al.                       | Various<br>1975ff | MFR et al.      | Geometric Routing proposed                                            |
|----------------------------------------|-------------------|-----------------|-----------------------------------------------------------------------|
| Kranakis, Singh,<br>Urrutia            | CCCG<br>1999      | Face<br>Routing | First correct algorithm                                               |
| Bose, Morin,<br>Stojmenovic, Urrutia   | DialM<br>1999     | GFG             | First average-case efficient algorithm (simulation but no proof)      |
| Karp, Kung                             | MobiCom<br>2000   | GPSR            | A new name for GFG                                                    |
| Kuhn, Wattenhofer,<br>Zollinger        | DialM<br>2002     | AFR             | First worst-case analysis. Tight $\Theta(c^2)$ bound.                 |
| Kuhn, Wattenhofer,<br>Zollinger        | MobiHoc<br>2003   | GOAFR           | Worst-case optimal and average-<br>case efficient, percolation theory |
| Kuhn, Wattenhofer,<br>Zhang, Zollinger | PODC<br>2003      | GOAFR+          | Currently best algorithm, other cost metrics, etc.                    |

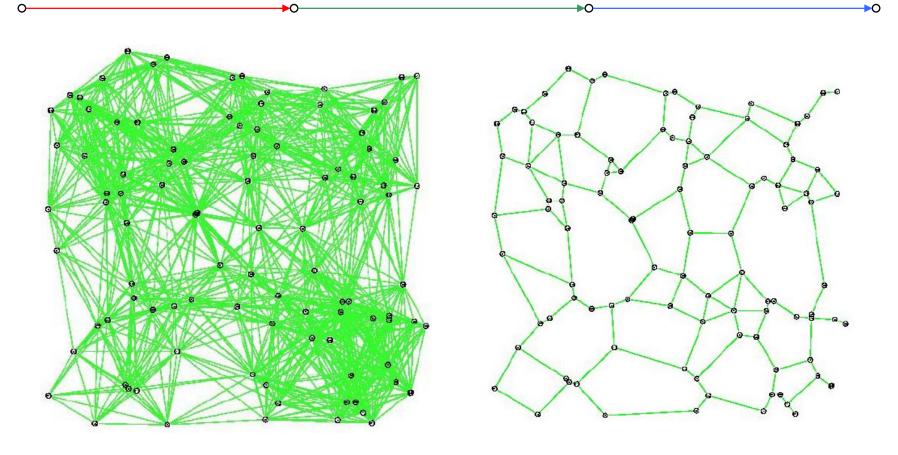


#### Overview – Topology Control

- What is Topology Control?
- Explicit interference model
- Interference in known topologies
- Algorithms
  - Connectivity-preserving and spanner topologies
  - Worst case, average case



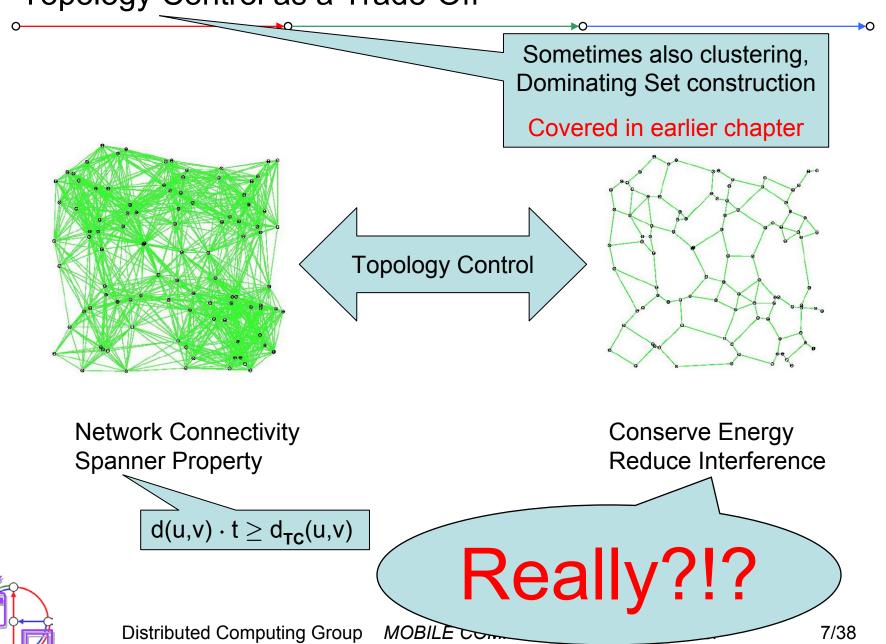
## **Topology Control**



- Drop long-range neighbors: Reduces interference and energy!
- But still stay connected (or even spanner)



## Topology Control as a Trade-Off



#### Implicit Interference Reduction

#### Context - Previous Work

- Mid-Eighties: randomly distributed nodes [Takagi & Kleinrock 1984, Hou & Li 1986]
- Second Wave: constructions from computational geometry, Delaunay Triangulation [Hu 1993], Minimum Spanning Tree [Ramanathan & Rosales-Hain INFOCOM 2000], Gabriel Graph [Rodoplu & Meng J.Sel.Ar.Com 1999]
- Cone-Based Topology Control [Wattenhofer et al. INFOCOM 2000]; explicitly prove several properties (energy spanner, sparse graph), locality
- Collecting more and more properties [Li et al. PODC 2001, Jia et al. SPAA 2003, Li et al. INFOCOM 2002] (e.g. local, planar, distance and energy spanner, constant node degree [Wang & Li DIALM-POMC 2003])

MobiHoc 2004

Interference issue "solved" implicitly by graph sparseness or bounded degree



WOODII IOC 2004

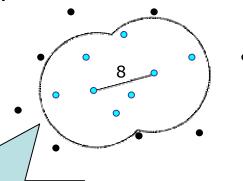
#### Explicit interference [Meyer auf der Heide et al. SPAA 2002]

- Interference between edges, time-step routing model, congestion
- Trade-offs: congestion, power consumption, dilation
- Interference model based on network traffic



#### What Is Interference?

- Model
  - Transmitting edge e = (u,v) disturbs all nodes in vicinity
  - Interference of edge e =
     # Nodes covered by union of the two circles
     with center u and v, respectively, and radius |e|
- Problem statement
  - We want to minimize maximum interference!
  - At the same time topology must be connected or a spanner etc.

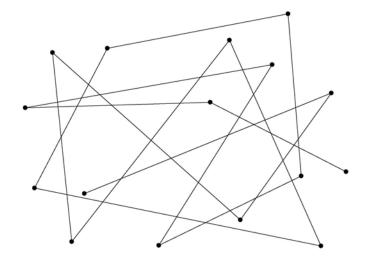


Exact size of interference range does not change the results



## Low Node Degree Topology Control?

Low node degree does **not** necessarily imply low interference:

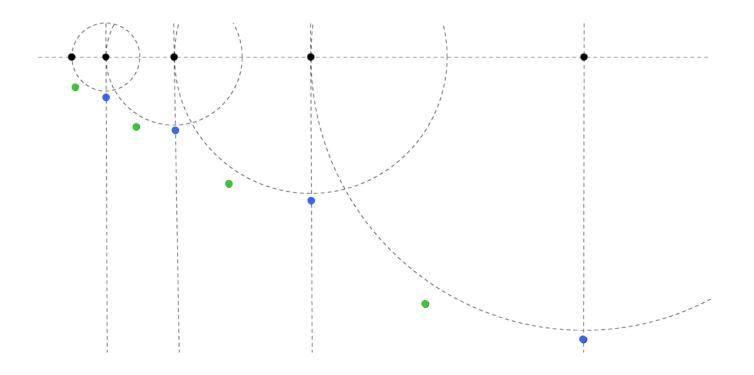


Very low node degree but huge interference



# Let's Study the Following Topology!

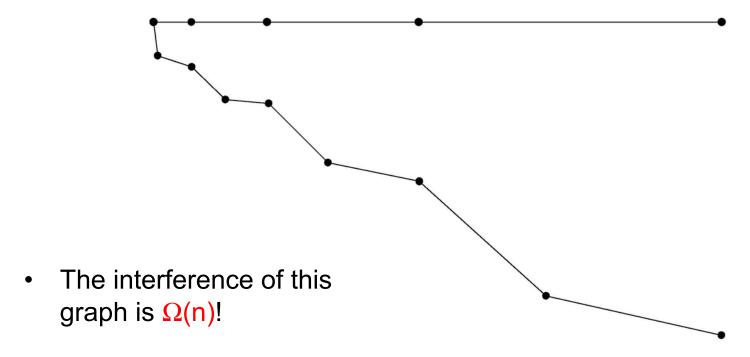
#### ...from a worst-case perspective





#### Topology Control Algorithms Produce...

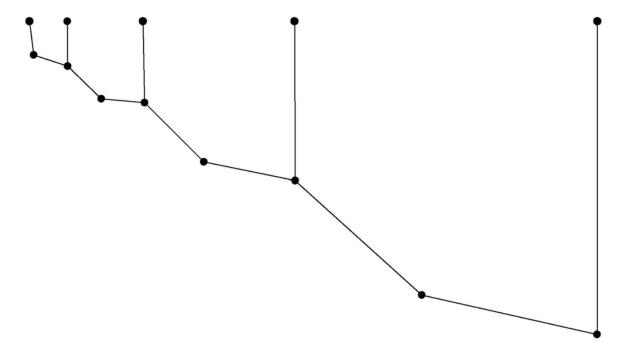
 All known topology control algorithms (with symmetric edges) include the nearest neighbor forest as a subgraph and produce something like this:





#### But Interference...

Interference does not need to be high...



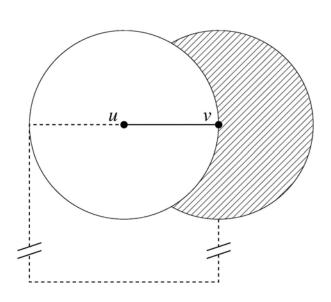
This topology has interference O(1)!!

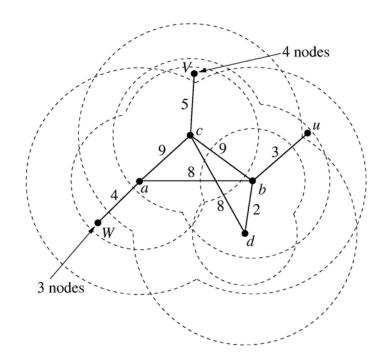


#### Interference-Optimal Topology

There is no local algorithm that can find a good interference topology

The optimal topology will not be planar







#### Algorithms - Requirement: Retain Graph Connectivity

- LIFE (Low Interference Forest Establisher)
- Attribute interference values as weights to edges
- Compute minimum spanning tree/forest (Kruskal's algorithm)

Theorem: LIFE constructs a Minimum Interference Forest

#### Proof:

- Algorithm computes forest
- MST also minimizes maximum interference value

```
Low
        Interference
                           Forest
                                      Establisher
(LIFE)
Input: a set of nodes V, each v \in V having
    attributed a maximum transmission radius
 1: E = \text{all eligible edges } (u, v) \ (r_u^{max} > |u, v|)
    and r_v^{max} > |u,v|) (* unprocessed edges *)
 2: E_{LIFE} = \emptyset
 3: G_{LIFE} = (V, E_{LIFE})
 4: while E \neq \emptyset do
    e = (u, v) \in E with minimum coverage
    if u, v are not connected in G_{LIFE} then
          E_{LIFE} = E_{LIFE} \cup \{e\}
 7:
       end if
 8:
       E = E \setminus \{e\}
10: end while
Output: Graph G_{LIFE}
```



#### Algorithms – Requirement: Construct Spanner

- LISE (Low Interference Spanner Establisher)
- Add edges with increasing interference until spanner property fulfilled

Theorem: LISE constructs a Minimum Interference t-Spanner

#### Proof:

- Algorithm computes t-spanner
- Algorithm inserts edges with increasing coverage only "as long as necessary"

```
Low Interference
                         Spanner
                                     Establisher
(LISE)
Input: a set of nodes V, each v \in V having
    attributed a maximum transmission radius
 1: E = \text{all eligible edges } (u, v) \ (r_u^{max} > |u, v|)
    and r_v^{max} > |u,v|) (* unprocessed edges *)
 2: E_{LISE} = \emptyset
 3: G_{LISE} = (V, E_{LISE})
 4: while E \neq \emptyset do
      e = (u, v) \in E with maximum coverage
       while |p^*(u,v)| in G_{LISE}| > t |u,v| do
 6:
         f = edge \in E with minimum coverage
 7:
         move all edges \in E with coverage
 8:
         Cov(f) to E_{LISE}
       end while
 9:
      E = E \setminus \{e\}
10:
11: end while
Output: Graph G_{LISE}
```



## Algorithms – Requirement: Construct Spanner Locally

- LLISE
- Local algorithm: scalable
- Nodes collect (t/2)-neighborhood
- Locally compute interferenceminimal paths guaranteeing spanner property
- Only request that path to stay in the resulting topology

Theorem: LLISE constructs a Minimum Interference t-Spanner

#### LLISE

1: collect  $(\frac{t}{2})$ -neighborhood  $G_N = (V_N, E_N)$  of G = (V, E)

2:  $E' = \emptyset$ 

3:  $G' = (V_N, E')$ 

4: repeat

5:  $f = \text{edge} \in E_N \text{ with minimum coverage}$ 

6: move all edges  $\in E_N$  with coverage Cov(f) to E'

7: p = shortestPath(u - v) in G'

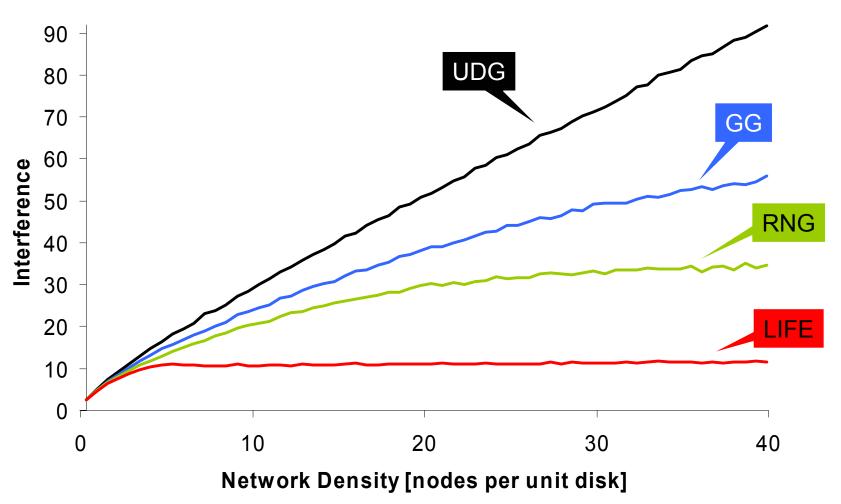
8: **until**  $|p| \le t |u, v|$ 

9: inform all edges on p to remain in the resulting topology.

Note:  $G_{LL} = (V, E_{LL})$  consists of all edges eventually informed to remain in the resulting topology.



#### Average-Case Interference: Preserve Connectivity



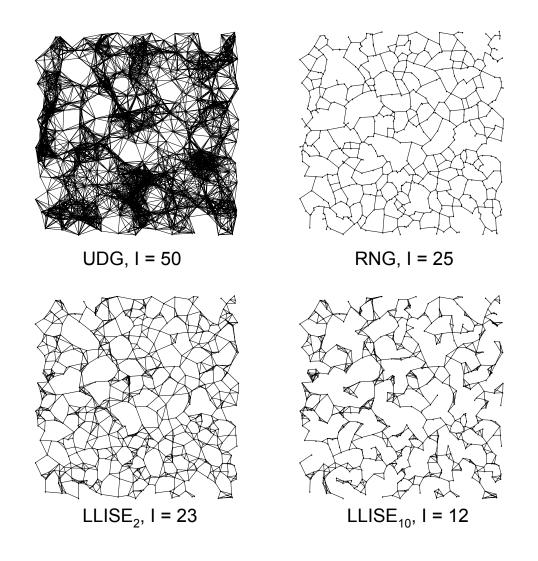


#### Average-Case Interference: Spanners





## Simulation



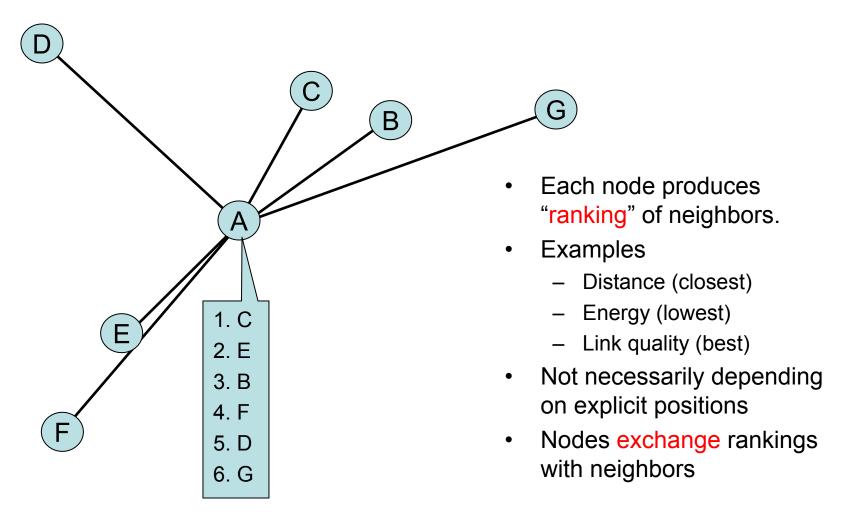


#### Overview – Lightweight Topology Control

- Topology Control commonly assumes that the node positions are known.
- What if we do not have access to position information?
- XTC algorithm
- XTC analysis
  - Worst case
  - Average case

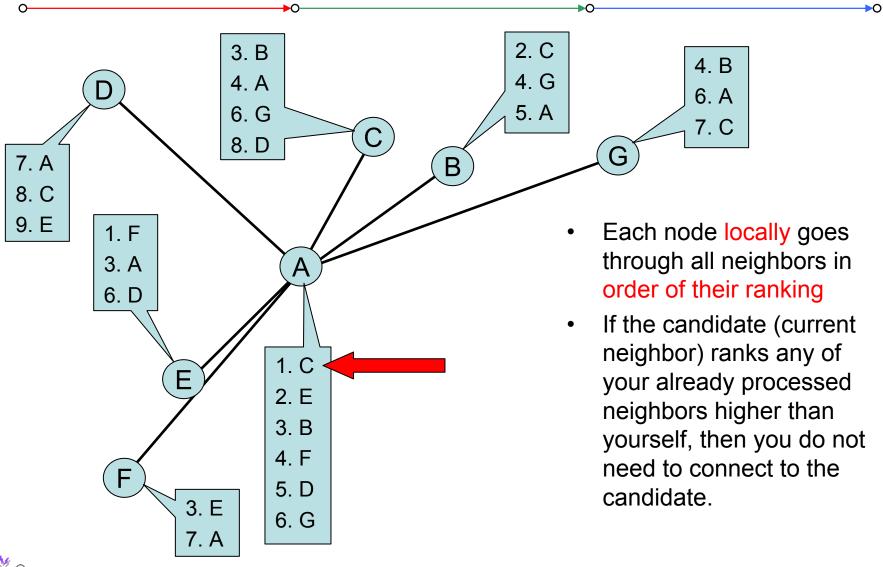


#### **XTC** Algorithm





#### XTC Algorithm (Part 2)





#### XTC Analysis (Part 1)

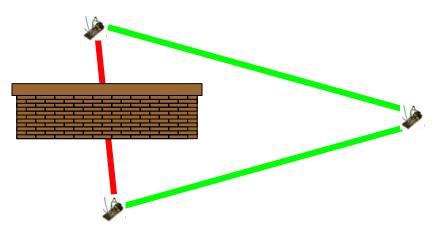
- Symmetry: A node u wants a node v as a neighbor if and only if v wants u.
- Proof:
  - Assume 1) u → v and 2) u  $\leftarrow$  v
  - Assumption 2) ⇒  $\exists$ w: (i) w  $\prec_v$  u and (ii) w  $\prec_u$  v

**Contradicts** Assumption 1)



#### XTC Analysis (Part 1)

- Symmetry: A node u wants a node v as a neighbor if and only if v wants u.
- Connectivity: If two nodes are connected originally, they will stay so (provided that rankings are based on symmetric link-weights).
- If the ranking is energy or link quality based, then XTC will choose a topology that routes around walls and obstacles.

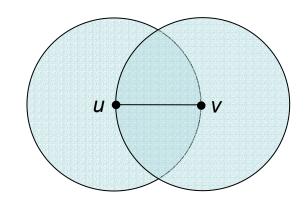




#### XTC Analysis (Part 2)

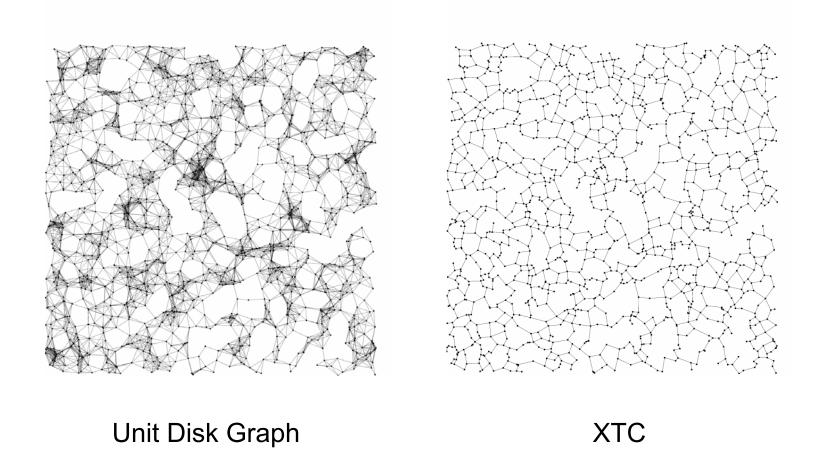
- If the given graph is a Unit Disk Graph (no obstacles, nodes homogeneous, but not necessarily uniformly distributed), then ...
- The degree of each node is at most 6.
- The topology is planar.
- The graph is a subgraph of the RNG.

- Relative Neighborhood Graph RNG(V):
- An edge e = (u,v) is in the RNG(V) iff there is no node w with (u,w) < (u,v) and (v,w) < (u,v).</li>





# XTC Average-Case



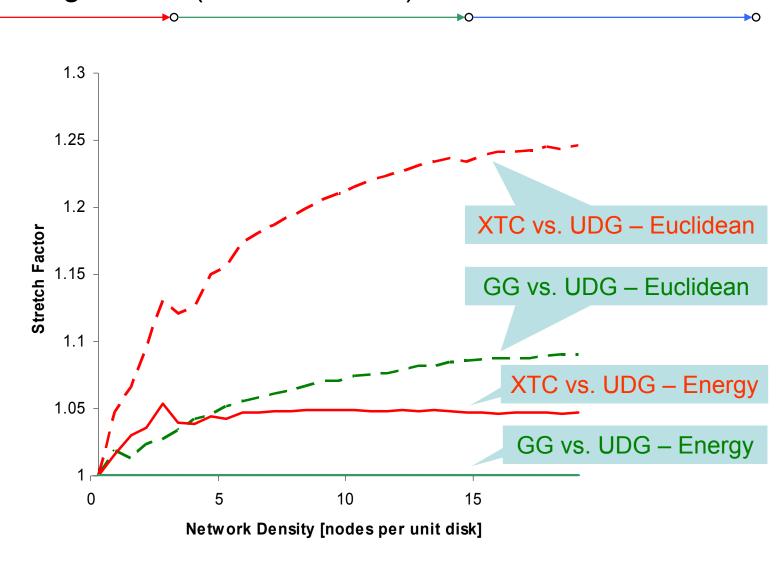


## XTC Average-Case (Degrees)





## XTC Average-Case (Stretch Factor)





#### XTC Average-Case (Geometric Routing)

