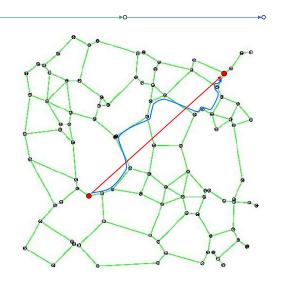
	Overview
<section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header>	 Geometric routing Greedy geometric routing Euclidean and planar graphs Unit disk graph Gabriel graph and other planar graphs Face Routing Adaptive Face Routing Lower bound Greedy (Other) Adaptive Face Routing
Geometric (Directional, Position-based) routing	Geometric routing
•even with all the tricks there will be flooding every now and then.	 Problem: What if there is no path in the right direction?
 In this chapter we will assume that the nodes are location aware (they have GPS, Galileo, or an ad-hoc way to figure out their coordinates), and that we know where the destination is. 	 We need a guaranteed way to reach a destination even in the case when there is no directional path
 Then we simply route towards the destination 	 Hack: as in flooding nodes keep track of the messages they have already seen, and then they backtrack* from there *backtracking? Does this mean that we need a stack?!?
Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/3	Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/4

Greedy routing

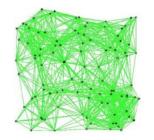
- Greedy routing looks promising.
- Maybe there is a way to choose the next neighbor and a particular graph where we always reach the destination?

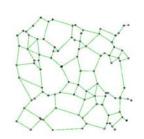


Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Euclidean and Planar Graphs

- · Euclidean: Points in the plane, with coordinates
- Planar: can be drawn without "edge crossings" in a plane





Euclidean planar graphs (planar embedding) simplify geometric routing.

٠

7/5

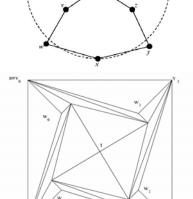
Examples why greedy algorithms fail

• We greedily route to the neighbor which is closest to the destination: But both neighbors of x are not closer to destination D

Also the best angle approach

if, in the example on the right, you always follow the edge with the narrowest angle to destination t, you will forward on a loop v_0 , w_0 , v_1 , w_1 , ..., v_3 , w_3 , v_0 , ...

might fail, even in a triangulation:



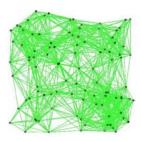
7/6

Ö

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Unit disk graph

- We are given a set V of nodes in the plane (points with coordinates).
- The unit disk graph *UDG*(*V*) is defined as an undirected graph (with *E* being a set of undirected edges). There is an edge between two nodes *u*,*v* iff the Euclidean distance between *u* and *v* is at most 1.
- Think of the unit distance as the maximum transmission range.
- We assume that the unit disk graph *UDG* is connected (that is, there is a path between each pair of nodes)
- The unit disk graph has many edges.
- Can we drop some edges in the UDG to reduced complexity and interference?



7/8

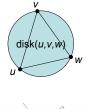
Planar graphs

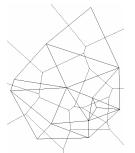
- Definition: A planar graph is a graph that can be drawn in the plane such that its edges only intersect at their common end-vertices.
- Kuratowski's Theorem: A graph is planar iff it contains no subgraph that is edge contractible to K₅ or K_{3,3}.
- Euler's Polyhedron Formula: A connected planar graph with n nodes, m edges, and f faces has n – m + f = 2.
- Right: Example with 9 vertices, 14 edges, and 7 faces (the yellow "outside" face is called the infinite face)
- Theorem: A simple planar graph with n nodes has at most 3n–6 edges, for n≥3.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Delaunay Triangulation

- Let disk(*u*,*v*,*w*) be a disk defined by the three points *u*,*v*,*w*.
- The Delaunay Triangulation (Graph) DT(V) is defined as an undirected graph (with E being a set of undirected edges). There is a triangle of edges between three nodes u,v,w iff the disk(u,v,w) contains no other points.
- The Delaunay Triangulation is the dual of the Voronoi diagram, and widely used in various CS areas; the DT is planar; the distance of a path (s,...,t) on the DT is within a constant factor of the s-t distance.

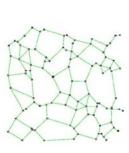




Ö

Gabriel Graph

- Let disk(*u*,*v*) be a disk with diameter (*u*,*v*) that is determined by the two points *u*,*v*.
- The Gabriel Graph GG(*V*) is defined as an undirected graph (with *E* being a set of undirected edges). There is an edge between two nodes *u*,*v* iff the disk(*u*,*v*) including boundary contains no other points.
- As we will see the Gabriel Graph has interesting properties.



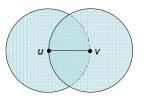
7/10

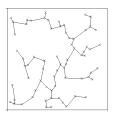
disk(u,v)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Other planar graphs

- Relative Neighborhood Graph RNG(V)
- An edge e = (u,v) is in the RNG(V) iff there is no node w with (u,w) < (u,v) and (v,w) < (u,v).
- Minimum Spanning Tree MST(V)
- A subset of *E* of *G* of minimum weight which forms a tree on *V*.





7/11

7/9

Properties of planar graphs

• Theorem 1: $MST(V) \subseteq RNG(V) \subseteq GG(V) \subseteq DT(V)$

Corollary:

Since the MST(V) is connected and the DT(V) is planar, all the planar graphs in Theorem 1 are connected and planar.

Theorem 2:

The Gabriel Graph contains the Minimum Energy Path (for any path loss exponent $\alpha \geq$ 2)

- Corollary: $GG(V) \cap UDG(V) \text{ contains the Minimum Energy Path in } UDG(V)$

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Routing on Delaunay Triangulation?

- Let *d* be the Euclidean distance of source *s* and destination *t*
- Let *c* be the sum of the distances of the links of the shortest path in the Delaunay Triangulation
- It was shown that $c = \Theta(d)$
- Two problems:
- 1) How do we find this best route in the DT? With flooding?!?
- 2) How do we find the DT at all in a distributed fashion?
- ... and even worse: The DT contains edges that are not in the UDG, that is, nodes that cannot hear each other are "neighbors" on DT

7/13

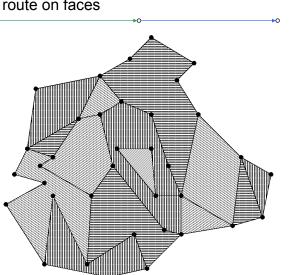
7/15

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

7/14

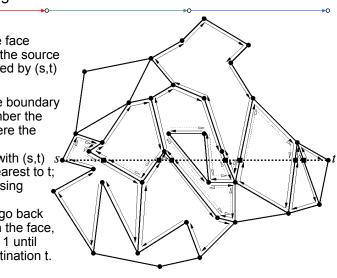
Breakthrough idea: route on faces

- Remember the faces...
- Idea: Route along the boundaries of the faces that lie on the source-destination line



Face Routing

- 0. Let f be the face incident to the source s, intersected by (s,t)
- Explore the boundary of f; remember the point p where the boundary intersects with (s,t) s which is nearest to t; after traversing the whole boundary, go back to p, switch the face, and repeat 1 until you hit destination t.



Face Routing Works on Any Graph

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/17

Is there something better than Face Routing?

- How to improve face routing? Face Routing 2 ☺
- Idea: Don't search a whole face for the best exit point, but take the first (better) exit point you find. Then you don't have to traverse huge faces that point away from the destination.
- Efficiency: Seems to be practically more efficient than face routing. But the theoretical worst case is worse – O(n²).
- Problem: if source and destination are very close, we don't want to route through all nodes of the network. Instead we want a routing algorithm where the cost is a function of the cost of the best route in the unit disk graph (and independent of the number of nodes).

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Face routing is correct

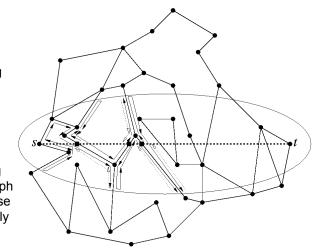
- Theorem: Face routing terminates on any simple planar graph in O(n) steps, where n is the number of nodes in the network
- Proof: A simple planar graph has at most 3n–6 edges. You leave each face at the point that is closest to the destination, that is, you never visit a face twice, because you can order the faces that intersect the source—destination line on the exit point. Each edge is in at most 2 faces. Therefore each edge is visited at most 4 times. The algorithm terminates in O(n) steps.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

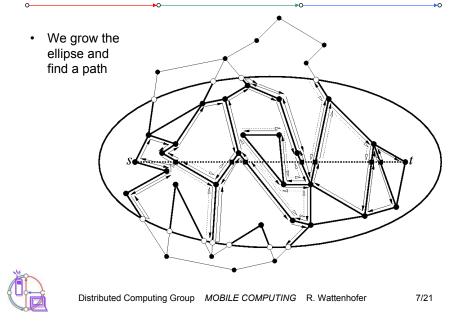
7/18

Adaptive Face Routing (AFR)

- Idea: Use face routing together with ad-hoc routing trick 1!!
- That is, don't route beyond some radius r by branching the planar graph within an ellipse of exponentially growing size.



AFR Example Continued



The $\Omega(1)$ Model

- We simplify the model by assuming that nodes are sufficiently far apart; that is, there is a constant d₀ such that all pairs of nodes have at least distance d₀. We call this the Ω(1) model.
- This simplification is natural because nodes with transmission range 1 (the unit disk graph) will usually not "sit right on top of each other".
- Lemma: In the Ω(1) model, all natural cost models (such as the Euclidean distance, the energy metric, the link distance, or hybrids of these) are equal up to a constant factor.
- Remark: The properties we use from the $\Omega(1)$ model can also be established with a backbone graph construction.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

7/23

AFR Pseudo-Code

- Calculate G = GG(V) ∩ UDG(V) Set c to be twice the Euclidean source—destination distance.
- Nodes w ∈ W are nodes where the path s-w-t is larger than c. Do face routing on the graph G, but without visiting nodes in W. (This is like pruning the graph G with an ellipse.) You either reach the destination, or you are stuck at a face (that is, you do not find a better exit point.)
- 2. If step 1 did not succeed, double c and go back to step 1.
- Note: All the steps can be done completely locally, and the nodes need no local storage.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/22

Analysis of AFR in the $\Omega(1)$ model

- Lemma 1: In an ellipse of size c there are at most O(c²) nodes.
- Lemma 2: In an ellipse of size c, face routing terminates in O(c²) steps, either by finding the destination, or by not finding a new face.
- Lemma 3: Let the optimal source—destination route in the UDG have cost c*. Then this route c* must be in any ellipse of size c* or larger.
- Theorem: AFR terminates with cost O(c*2).
- Proof: Summing up all the costs until we have the right ellipse size is bounded by the size of the cost of the right ellipse size.

