Chapter 7

 GEOMETRIC

ROUTING

Mobile Computing
 Summer 2004

Overview

- Geometric routing
- Greedy geometric routing
- Euclidean and planar graphs
- Unit disk graph
- Gabriel graph and other planar graphs
- Face Routing
- Adaptive Face Routing
- Lower bound
- Greedy (Other) Adaptive Face Routing

Geometric (Directional, Position-based) routing

- ...even with all the tricks there will be flooding every now and then.
- In this chapter we will assume that the nodes are location aware (they have GPS, Galileo, or an ad-hoc way to figure out their coordinates), and that we know where the destination is.
- Then we simply route towards the destination

Geometric routing

- Problem: What if there is no path in the right direction?
- We need a guaranteed way to reach a destination even in the case when there is no directional path...
- Hack: as in flooding nodes keep track of the messages they have already seen, and then they backtrack* from there
*backtracking? Does this mean that we need a stack?!?

Greedy routing

- Greedy routing looks promising.
- Maybe there is a way to choose the next neighbor and a particular graph where we always reach the destination?

Examples why greedy algorithms fail

- We greedily route to the neighbor which is closest to the destination: But both neighbors of x are not closer to destination D

- Also the best angle approach might fail, even in a triangulation: if, in the example on the right, you always follow the edge with the narrowest angle to destination t, you will forward on a loop $\mathrm{v}_{0}, \mathrm{w}_{0}, \mathrm{v}_{1}, \mathrm{w}_{1}, \ldots, \mathrm{v}_{3}, \mathrm{w}_{3}, \mathrm{v}_{0}, \ldots$

Euclidean and Planar Graphs

- Euclidean: Points in the plane, with coordinates
- Planar: can be drawn without "edge crossings" in a plane

- Euclidean planar graphs (planar embedding) simplify geometric routing.

Unit disk graph

- We are given a set V of nodes in the plane (points with coordinates).
- The unit disk graph $U D G(V)$ is defined as an undirected graph (with E being a set of undirected edges). There is an edge between two nodes u, v iff the Euclidean distance between u and v is at most 1 .
- Think of the unit distance as the maximum transmission range.
- We assume that the unit disk graph $U D G$ is connected (that is, there is a path between each pair of nodes)
- The unit disk graph has many edges.
- Can we drop some edges in the UDG to reduced complexity and interference?

Planar graphs

- Definition: A planar graph is a graph that can be drawn in the plane such that its edges only intersect at their common end-vertices.

- Kuratowski's Theorem: A graph is planar iff it contains no subgraph that is edge contractible to K_{5} or $K_{3,3}$.
- Euler's Polyhedron Formula: A connected planar graph with n nodes, m edges, and f faces has $n-m+f=2$.
- Right: Example with 9 vertices, 14 edges, and 7 faces (the yellow "outside" face is called the infinite face)
- Theorem: A simple planar graph with n nodes has at most $3 \mathrm{n}-6$ edges, for $\mathrm{n} \geq 3$.

Gabriel Graph

- Let $\operatorname{disk}(u, v)$ be a disk with diameter (u, v) that is determined by the two points u, v.
- The Gabriel Graph $G G(V)$ is defined as an undirected graph (with E being a set of undirected edges). There is an edge between two nodes u, v iff the disk(u, v) including boundary contains no other points.
- As we will see the Gabriel Graph has interesting properties.

Delaunay Triangulation

- Let $\operatorname{disk}(u, v, w)$ be a disk defined by the three points u, v, w.
- The Delaunay Triangulation (Graph) $\mathrm{DT}(V)$ is defined as an undirected graph (with E being a set of undirected
 edges). There is a triangle of edges between three nodes u, v, w iff the disk (u, v, w) contains no other points.
- The Delaunay Triangulation is the dual of the Voronoi diagram, and widely used in various CS areas; the DT is planar; the distance of a path (s, \ldots, t) on the DT is within a constant factor of the s-t distance.

Other planar graphs

- Relative Neighborhood Graph RNG(V)
- An edge $e=(u, v)$ is in the $R N G(V)$ iff there is no node w with ($u, w)<(u, v)$ and (v, w) $<(\mathrm{u}, \mathrm{v})$.

- Minimum Spanning Tree MST(V)
- A subset of E of G of minimum weight which forms a tree on V.

Properties of planar graphs

- Theorem 1:
$M S T(V) \subseteq R N G(V) \subseteq G G(V) \subseteq D T(V)$
- Corollary: Since the $\operatorname{MST}(\mathrm{V})$ is connected and the $\mathrm{DT}(\mathrm{V})$ is planar, all the planar graphs in Theorem 1 are connected and planar.
- Theorem 2:

The Gabriel Graph contains the Minimum Energy Path (for any path loss exponent $\alpha \geq 2$)

- Corollary: $G G(V) \cap U D G(V)$ contains the Minimum Energy Path in UDG(V)

Routing on Delaunay Triangulation?

- Let d be the Euclidean distance of source s and destination t
- Let c be the sum of the distances of the links of the shortest path in the Delaunay Triangulation
- It was shown that $c=\Theta(d)$

- Two problems:

1) How do we find this best route in the DT? With flooding?!?
2) How do we find the DT at all in a distributed fashion?
... and even worse: The DT contains edges that are not in the UDG, that is, nodes that cannot hear each other are "neighbors" on DT

Breakthrough idea: route on faces

O-

- Remember the faces...
- Idea:

Route along the boundaries of the faces that lie on the source-destination line

Face Routing

0. Let f be the face incident to the source s , intersected by (s, t)
1. Explore the boundary of f; remember the point p where the boundary intersects with (s, t) which is nearest to t ; after traversing the whole boundary, go back to p, switch the face, and repeat 1 until you hit destination t.

Face Routing Works on Any Graph

Face routing is correct

- Theorem: Face routing terminates on any simple planar graph in $\mathrm{O}(\mathrm{n})$ steps, where n is the number of nodes in the network
- Proof: A simple planar graph has at most 3n-6 edges. You leave each face at the point that is closest to the destination, that is, you never visit a face twice, because you can order the faces that intersect the source-destination line on the exit point. Each edge is in at most 2 faces. Therefore each edge is visited at most 4 times. The algorithm terminates in $\mathrm{O}(\mathrm{n})$ steps.

Is there something better than Face Routing?

- How to improve face routing? Face Routing 2 ©
- Idea: Don't search a whole face for the best exit point, but take the first (better) exit point you find. Then you don't have to traverse huge faces that point away from the destination.
- Efficiency: Seems to be practically more efficient than face routing. But the theoretical worst case is worse - $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- Problem: if source and destination are very close, we don't want to route through all nodes of the network. Instead we want a routing algorithm where the cost is a function of the cost of the best route in the unit disk graph (and independent of the number of nodes).

Adaptive Face Routing (AFR)

- Idea: Use face routing together with ad-hoc routing trick 1!!
- That is, don't route beyond some radius r by branching the planar graph within an ellipse of exponentially growing size.

AFR Example Continued

- We grow the ellipse and find a path

AFR Pseudo-Code

0. Calculate $G=G G(V) \cap U D G(V)$ Set c to be twice the Euclidean source-destination distance.
1. Nodes $w \in W$ are nodes where the path $s-w-t$ is larger than c. Do face routing on the graph G, but without visiting nodes in W. (This is like pruning the graph G with an ellipse.) You either reach the destination, or you are stuck at a face (that is, you do not find a better exit point.)
2. If step 1 did not succeed, double c and go back to step 1 .

- Note: All the steps can be done completely locally, and the nodes need no local storage.

The $\Omega(1)$ Model

- We simplify the model by assuming that nodes are sufficiently far apart; that is, there is a constant d_{0} such that all pairs of nodes have at least distance d_{0}. We call this the $\Omega(1)$ model.
- This simplification is natural because nodes with transmission range 1 (the unit disk graph) will usually not "sit right on top of each other".
- Lemma: In the $\Omega(1)$ model, all natural cost models (such as the Euclidean distance, the energy metric, the link distance, or hybrids of these) are equal up to a constant factor.
- Remark: The properties we use from the $\Omega(1)$ model can also be established with a backbone graph construction.

Analysis of AFR in the $\Omega(1)$ model

- Lemma 1: In an ellipse of size c there are at most $O\left(c^{2}\right)$ nodes.
- Lemma 2: In an ellipse of size c, face routing terminates in $\mathrm{O}\left(\mathrm{c}^{2}\right)$ steps, either by finding the destination, or by not finding a new face.
- Lemma 3: Let the optimal source-destination route in the UDG have cost c^{*}. Then this route c^{*} must be in any ellipse of size c^{*} or larger.
- Theorem: AFR terminates with cost $\mathrm{O}\left(\mathrm{c}^{*} 2\right)$.
- Proof: Summing up all the costs until we have the right ellipse size is bounded by the size of the cost of the right ellipse size.

