
Chapter 2
APPLICATIONS

Computer Networks
Timothy Roscoe

Summer 2007
Networks & Operating Systems Computer Networks T. Roscoe 2/2

Overview

• This week: Learn specific application layer protocols
– HTTP, FTP, SMTP, POP, DNS, etc.
– learn about protocols by examining popular

application-level protocols
– conceptual and implementation aspects of network

application protocols
– client-server paradigm
– service models

• Next week: How to program network applications?
– Socket API for Java and C

Networks & Operating Systems Computer Networks T. Roscoe 2/3

Applications vs. Application-Layer Protocols

• Application: communicating,
distributed process
– running in network hosts in

“user space”
– exchange messages to

implement application
– e.g. email, ftp, web

• Application-layer protocol
– one part of application
– define messages

exchanged by applications
and actions taken

– use communication
services provided by
transport layer protocols
(TCP, UDP)

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Networks & Operating Systems Computer Networks T. Roscoe 2/4

Network applications: some jargon

• Process: program running within
a host
– within same host, two

processes can communicate
using interprocess
communication (defined by
the Operating System).

– processes running on
different hosts must
communicate with an
application-layer protocol
through messages

• User agent: software process,
interfacing with user “above”
and network “below”
– implements application-

level protocol
– Examples

• Web: browser
• E-mail: mail reader
• streaming audio/video:

media player

Networks & Operating Systems Computer Networks T. Roscoe 2/5

application
transport
network
data link
physical

application
transport
network
data link
physical

Client
• initiates contact with server

(“client speaks first”)
• typically requests service from server
• Web: client implemented in browser
• email: client in mail reader
Server
• provides requested service to client
• e.g. Web server sends requested

Web page, mail server delivers e-mail

request

reply

Client-server paradigm

Typical network app has two
parts: Client and Server

Networks & Operating Systems Computer Networks T. Roscoe 2/6

API: Application Programming Interface

• Defines interface between
application and transport
layers

• Most common Internet API:
“sockets”

• two processes communicate
by sending data into socket,
reading data out of socket

• How does a process identify
the other process with which it
wants to communicate?
– IP (“Internet Protocol”)

address of host running
other process

– “port number”: allows
receiving host to determine
to which local process the
message should be
delivered

– lots more on this later…

Networks & Operating Systems Computer Networks T. Roscoe 2/7

Data loss
• some apps (e.g. audio) can

tolerate some loss
• other apps (e.g. file transfer)

require 100% reliable data
transfer

Timing
• some apps (e.g. Internet

telephony, interactive
games) require low delay to
be “effective”

Bandwidth
• some apps (e.g. multimedia)

require minimum amount of
bandwidth to be “effective”

• other apps (“elastic apps”)
make use of whatever
bandwidth they get

What transport service does an app need?

Networks & Operating Systems Computer Networks T. Roscoe 2/8

Application

file transfer
e-mail

Web documents
real-time audio/video,

e.g VoIP
stored audio/video
interactive games

financial apps

Data loss

no loss
no loss
loss-tolerant
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps up
elastic

Time Sensitive

no
no
no
yes, 150 msec

yes, few secs
yes, 100’s msec
yes and no

Common transport requirements

Networks & Operating Systems Computer Networks T. Roscoe 2/9

Internet transport protocol services

TCP service
• connection-oriented: setup

required between client, server
• reliable transport between

sending and receiving process
• flow control: sender won’t

overwhelm receiver
• congestion control: throttle

sender when network
overloaded

• does not provide timing,
minimum bandwidth
guarantees

UDP service
• unreliable data transfer

between sending and
receiving process

• does not provide connection
setup, reliability, flow control,
congestion control, timing, or
bandwidth guarantee

• Why bother? Why is there a
UDP service at all?!?

Networks & Operating Systems Computer Networks T. Roscoe 2/10

Application

e-mail
remote terminal access

World-wide web
file transfer

streaming multimedia

remote file server
Internet telephony

Application
layer protocol

SMTP [RFC 821]
telnet [RFC 854]
HTTP [RFC 2068]
ftp [RFC 959]
RTP, RTSP,
etc.
NFS, SMB
SIP, Skype, etc.

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP
typically UDP

Internet apps: application, transport protocols

Networks & Operating Systems Computer Networks T. Roscoe 2/11

The Web: The HTTP protocol

HTTP: hypertext transfer protocol
• Web’s application layer

protocol
• client/server model

– client: browser that
requests, receives, and
“displays” Web objects

– server: Web server sends
objects in response to
requests

• HTTP 1.0: RFC 1945
• HTTP 1.1: RFC 2616

PC running
Internet
Explorer

Server
running

Apache Web
server

Mac running
Firefox

HTTP request

HTTP request

HTTP response

HTTP response

Networks & Operating Systems Computer Networks T. Roscoe 2/12

More on the HTTP protocol

• client initiates TCP connection
(creates socket) to server, port
80

• server accepts TCP connection
from client

• HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web server
(HTTP server)

• TCP connection closed

HTTP is “stateless”
• server maintains no

information about past
client requests

• Protocols that maintain
“state” are complex!

• past history (state) must be
maintained

• if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

Networks & Operating Systems Computer Networks T. Roscoe 2/13

Suppose user enters URL http://www.inf.ethz.ch/education/index.html
(assume that web page contains text, references to 10 jpeg images)

1. HTTP client initiates TCP
connection to HTTP server
(process) at
www.inf.ethz.ch. Port 80
is default for HTTP server.

3. HTTP client sends HTTP
request message
(containing URL) into TCP
connection socket

2. HTTP server at host
www.inf.ethz.ch waiting
for TCP connection at port
80, “accepts” connection,
notifies client

4. HTTP server receives
request message, forms
response message
containing requested
object (index.html in
directory education),
sends message into sockettime

Example for HTTP

Networks & Operating Systems Computer Networks T. Roscoe 2/14

Example for HTTP (continued)

6. HTTP client receives
response message
containing html file,
displays html. Parsing
html file, finds 10
referenced jpeg pictures

Then…
Steps 1-6 repeated for
each of the 10 jpeg
objects

5. HTTP server closes TCP
connection

time

Networks & Operating Systems Computer Networks T. Roscoe 2/15

Non-persistent
• HTTP/1.0
• server parses request,

responds, closes TCP
connection

• 2 RTTs (round-trip-time)
to fetch object
– TCP connection
– object request/transfer

• each transfer suffers from
TCP’s initially slow sending
rate

• many browsers open multiple
parallel connections

Persistent
• default for HTTP/1.1
• on same TCP connection:

server, parses request,
responds, parses new
request,…

• client sends requests for all
referenced objects as soon
as it receives base HTML

• fewer RTTs, less slow start

Non-persistent vs. persistent connections

Networks & Operating Systems Computer Networks T. Roscoe 2/16

HTTP message format: request

• two types of HTTP messages: request, response
• HTTP request message: ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.servername.com
User-agent: Mozilla/4.0
Accept-language: de

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return
and line feed
indicate end
of message

Networks & Operating Systems Computer Networks T. Roscoe 2/17

HTTP request message: the general format

Networks & Operating Systems Computer Networks T. Roscoe 2/18

HTTP message format: response

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2007 12:03:35 GMT
Server: Apache/1.3.33 (Unix)
Connection: close
Content-Type: text/html; charset=iso-8859-1
Last-Modified: Mon, 22 Jun 1998 …
Content-Length: 6821

<HTML><HEAD> ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.
requested

html file

Networks & Operating Systems Computer Networks T. Roscoe 2/19

HTTP response status codes

200 OK
– request succeeded, requested object later in this message

301 Moved Permanently
– requested object moved, new location specified later in this

message (Location:)
400 Bad Request

– request message not understood by server
404 Not Found

– requested document not found on this server
505 HTTP Version Not Supported

First line of server -> client response message.
A few sample codes:

Networks & Operating Systems Computer Networks T. Roscoe 2/20

An aside on Telnet
• Remote (character) terminal access [RFC 854, 1983!]

– Uses TCP transport, port 23
– Lots of in-band control codes
– Surprisingly complex (15 pages + 40 further RFCs!)
– No security (encryption, etc.) until 2000.
– Largely superceded by Secure Shell (ssh)
– Hardly used any more…

But…
• Standard in Unix: telnet <host> [<port>]
• Most Internet protocols are intentionally text based

– Ease of implementation, debugging, testing
– telnet is fantastically useful for protocol hacking…

Networks & Operating Systems Computer Networks T. Roscoe 2/21

Ultra-minimalist web browsing

1. Telnet to a Web server:
telnet people.inf.ethz.ch 80

2. Type in a GET HTTP request:
GET /troscoe/ HTTP/1.0

3. Check out response message
sent by HTTP server…

• Opens TCP connection to
port 80 (default HTTP
server port) at
people.inf.ethz.ch.

• Anything typed in sent to
people.inf.ethz.ch port 80

• By typing this followed by a
blank line (hit return twice),
you send this minimal (but
complete) GET request to
the HTTP server

But why doesn’t this work for something
useful like www.sbb.ch?

Networks & Operating Systems Computer Networks T. Roscoe 2/22

More modern ultra-minimalist web browsing
• Lots of web sites on the same machine
• Only one port 80
• Need to say which site you want

1. telnet www.sbb.ch 80

2. Type in a GET HTTP request:
GET /index.html HTTP/1.0
Host: www.sbb.ch

3. Should work a lot better…

Sneak peek:
• “www.sbb.ch” is the name of

the site, but not its address
• One address can have many

names
• More on this later with DNS…

Networks & Operating Systems Computer Networks T. Roscoe 2/23

• Authentication: control access
to server content

• authorization credentials:
typically name and password

• stateless: client must present
authorization in each request
– authorization: header line in

each request
– if no authorization: header,

server refuses access,
sends

WWW authenticate:

header line in response

client server

usual request msg

401: authorization req.
WWW-authenticate:

usual request msg
+ Authorization: <cred>

usual HTTP response
msg

usual request msg
+ Authorization: <cred>

usual HTTP response
msg

time

HTTP user-server interaction: authentication

Networks & Operating Systems Computer Networks T. Roscoe 2/24

• server-generated # , server-
remembered #, later used for
– authentication
– remembering user

preferences
– remembering previous

choices
– (…privacy?)

• server sends “cookie” to client
in response msg
Set-cookie: 1678453

• client presents cookie in later
requests
Cookie: 1678453

client server

usual HTTP request

usual HTTP response +
Set-cookie: #

usual request msg
Cookie: #

usual HTTP response
msg

usual HTTP request
Cookie: #

usual HTTP response
msg

cookie-
specific
action

cookie-
specific
action

Cookies: keeping “state”

Networks & Operating Systems Computer Networks T. Roscoe 2/25

A recent cookie from Google

• Expires: when to throw this cookie away
• Domain: who to present this cookie to
• Path: which URLs to present this cookie with
• The rest: known only to Google (but…)

Set-Cookie: PREF=ID=313e7de24f3b48a3:
TM=1175005089:LM=1175005089:S=OoXbqHqVOejOEVmc;
expires=Sun, 17-Jan-2038 19:14:07 GMT;
path=/;
domain=.google.com

Networks & Operating Systems Computer Networks T. Roscoe 2/26

• Goal: don’t send object if
client has up-to-date cached
version

• Client: specify date of cached
copy in HTTP request
If-modified-since:
<date>

• Server: response contains no
object if cached copy is up-to-
date:
HTTP/1.0 304 Not
Modified

client server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.1 200 OK

<data>

object
modified

Conditional GET: client-side caching

Networks & Operating Systems Computer Networks T. Roscoe 2/27

client

proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

• Goal: satisfy client
request without involving
origin server

• User sets browser: Web
accesses via web cache

• Client sends all HTTP
requests to web cache
– object in web cache:

web cache returns
object

– else web cache
requests object from
origin server, then
returns object to client

Web Caches (a.k.a. proxy server)

Networks & Operating Systems Computer Networks T. Roscoe 2/28

Why Web Caching?

origin
servers

public
Internet

institutional
network 100 Mbps LAN

1.5 Mbps
access link

institutional
cache

• Assumption: cache is “close”
to client (e.g. in same network)

• Smaller response time: cache
“closer” to client

• Decrease traffic to distant
servers

• Link out of institutional/local
ISP network is often a
bottleneck

Networks & Operating Systems Computer Networks T. Roscoe 2/29

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

ftp: The file transfer protocol

• transfer file to/from remote host
• client/server model

– client: side that initiates transfer (either to/from remote)
– server: remote host

• ftp: RFC 959
• ftp server: port 21

Networks & Operating Systems Computer Networks T. Roscoe 2/30

ftp: separate control and data connections

• ftp client contacts ftp server at
port 21, specifying TCP as
transport protocol

• two parallel TCP connections
opened
– control: exchange

commands, responses
between client, server.
“out of band control”

– data: file data to/from
server

• ftp server maintains “state”:
current directory, earlier
authentication

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

Networks & Operating Systems Computer Networks T. Roscoe 2/31

ftp commands and responses

Sample commands
• sent as ASCII text over control

channel
• USER username

• PASS password

• LIST returns list of files in
current directory

• RETR filename retrieves
(gets) file

• STOR filename stores (puts)
file onto remote host

Sample return codes
• status code and phrase (as in

HTTP)
• 331 Username OK,

password required

• 125 data connection
already open; transfer
starting

• 425 Can’t open data
connection

• 452 Error writing file

Networks & Operating Systems Computer Networks T. Roscoe 2/32

Good taste in protocol implementation
• Jon Postel in RFC 791:

“In general, an implementation should be
conservative in its sending behaviour and

liberal in its receiving behaviour”

• The hardest thing about protocol implementation is
“expecting the unexpected”.

• People send you the strangest stuff…

• Worst-case example: electronic mail

Networks & Operating Systems Computer Networks T. Roscoe 2/33

Electronic Mail

Three major components
• user agents
• mail servers
• simple mail transfer protocol: SMTP

User Agent
• a.k.a. “mail reader”
• composing, editing, reading mail

messages
• Examples: Outlook, Netscape

Messenger, elm, Eudora
• outgoing, incoming messages

stored on server
user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Networks & Operating Systems Computer Networks T. Roscoe 2/34

• mailbox contains incoming
messages (yet to be read) for
user

• message queue of outgoing (to
be sent) mail messages

• SMTP protocol between mail
servers to send email
messages
– “client”: sending mail server
– “server”: receiving mail

server

• Why not sending directly?

Electronic Mail: mail servers

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Networks & Operating Systems Computer Networks T. Roscoe 2/35

• uses TCP to reliably transfer email message from
client to server, on port 25

• direct transfer: sending server to receiving server
• three phases of transfer

– handshake (greeting)
– transfer of messages
– closure

• command/response interaction
– commands: ASCII text
– response: status code and phrase

• SMTP: RFC 821

Electronic Mail: SMTP

Networks & Operating Systems Computer Networks T. Roscoe 2/36

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: From: Alice <alice@crepes.fr>
C: To: Bob <bob@hamburger.edu>
C: Subject: Fancy lunch?
C:
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Sample SMTP interaction

Networks & Operating Systems Computer Networks T. Roscoe 2/37

SMTP “issues”

• Trademark of Hormel Foods, Inc.
• Pork, mechanically recovered chicken, additives
• Inexplicably, a delicacy in Hawaii…
• Immortalized by Monty Python

– Spam, spam, spam, spam, …
– Unwanted, typically anonymous / forged email

Networks & Operating Systems Computer Networks T. Roscoe 2/38

SMTP: more details

• Persistent connections
• Requires message (header &

body) to be in 7-bit ASCII
• certain character strings not

permitted in msg (e.g.,
CRLF.CRLF, which is used to
determine the end of a
message by the server).

• ⇒ msg must be encoded
(usually base-64 or quoted-
printable)

Comparison with HTTP
• HTTP: pull, email: push
• both have ASCII

command/response interaction
and status codes

• HTTP: each object
encapsulated in its own
response msg (1.0), or by use
of content-length field (1.1)

• SMTP: multiple objects sent in
multipart msg (as we will see
on the next slides)

Networks & Operating Systems Computer Networks T. Roscoe 2/39

Mail message format

• SMTP: protocol for exchanging email msgs
• RFC (2)822: standard for text message format:
• header lines, e.g.

– To:
– From:
– Subject:
(!) Caution: these are not SMTP

commands! They are like the
header of a letter, whereas SMTP
commands are like the address
on the envelope

• body
– the “message”
– ASCII characters only

header

body

blank
line

Networks & Operating Systems Computer Networks T. Roscoe 2/40

Message format: multimedia extensions

• MIME: multimedia mail extension, RFC 2045, 2046, …
• additional lines in message header declare MIME content type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

/9j/4RRARXhpZgAASUkqAAgAAAAKAA8BA
gAOAAAAhgAAABABAgAGAAAApgAAABIBAw
ABAAAAAQAAABoBBQABAAAA3gAAABsBBQA
...

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

Networks & Operating Systems Computer Networks T. Roscoe 2/41

MIME types

Text
• example subtypes: plain,

enriched, html

Image
• example subtypes: jpeg, gif

Audio
• example subtypes: basic (8-bit

mu-law encoded), 32kadpcm
(32 kbps coding)

Video
• example subtypes: mpeg,

quicktime

Application
• other data that must be

processed by reader before
“viewable”

• example subtypes: msword,
octet-stream

Content-Type: type/subtype; parameters

Networks & Operating Systems Computer Networks T. Roscoe 2/42

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789

--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain

Dear Bob,
Please find a picture of a crepe.
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
/9j/4RRARXhpZgAASUkqAAgAAAAKAA8BAgAOAAAAhgAAABABAgAGAAAApg
AAABIBAwABAAAAAQAAABoBBQABAAAA3gAAABsBBQA ...

--98766789--

MIME Multipart Type

Networks & Operating Systems Computer Networks T. Roscoe 2/43

Mail access protocols
• SMTP: delivery/storage to receiver’s server

– In the old days, their own machine...
• Mail access protocol: retrieval from server

– POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

– IMAP: Internet Mail Access Protocol [RFC 2060]
• more features (more complex)
• manipulation of stored messages on server

– HTTP: Hotmail, Yahoo! Mail, Google Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP POP3 or
IMAP

receiver’s mail
server

Networks & Operating Systems Computer Networks T. Roscoe 2/44

POP3 protocol

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 2 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user alice
S: +OK
C: pass hungry
S: +OK user successfully logged on

Authorization phase
• client commands:

– user: declare username
– pass: password

• server responses
– +OK
– -ERR

Transaction phase
• client commands

– list: list message numbers
– retr: retrieve message by

number
– dele: delete
– quit

Networks & Operating Systems Computer Networks T. Roscoe 2/45

People have many identifiers
• passport number, AHV

number, student number,
name, etc.

Internet hosts, routers
• IP address (129.132.130.152);

used for addressing datagrams
• Name (photek.ethz.ch);

used by humans

• We need a map from names to
IP addresses (and vice versa?)

Domain Name System
• distributed database

implemented in hierarchy of
many name servers

• application-layer protocol host,
routers, name servers to
communicate to resolve names
(name/address translation)
– note: is a core Internet

function, but only
implemented as application-
layer protocol

– complexity at network’s
“edge”

DNS: Domain Name System

Networks & Operating Systems Computer Networks T. Roscoe 2/46

DNS name servers

local name servers
– each ISP, company has

local (default) name server
– host DNS query first goes to

local name server

authoritative name server
– for a host: stores that host’s

IP address, name
– can perform name/address

translation for that host’s
name

Why not centralize DNS?
• single point of failure
• traffic volume
• distant centralized database
• maintenance

…it does not scale!

• no server has all name-to-IP
address mappings

Networks & Operating Systems Computer Networks T. Roscoe 2/47

DNS: Root name servers

• contacted by local name server that cannot resolve name
• root name server

– contacts authoritative name server if name mapping not known
– gets mapping
– returns mapping to local name server
– Until recently, 13 root name servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Marina del Rey, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA

i NORDUnet Stockholm
k RIPE London

m WIDE Tokyo

a NSI Herndon, VA
c PSInet Herndon, VA
d U Maryland College Park, MD
g DISA Vienna, VA
h ARL Aberdeen, MD
j NSI (TBD) Herndon, VA

Networks & Operating Systems Computer Networks T. Roscoe 2/48

Simple DNS example

• host photek.ethz.ch wants
IP address of
gaia.cs.umass.edu

1. contact local DNS server,
dns.ethz.ch (the “primary
resolver”)

2. dns.ethz.ch contacts root name
server, if necessary

3. root name server contacts
authoritative name server,
dns.umass.edu, if necessary

requesting host
photek.ethz.ch

gaia.cs.umass.edu

root name server

authoritative
name server

dns.umass.edu

local name server
dns.ethz.ch

1

2
3

4
5

6

Networks & Operating Systems Computer Networks T. Roscoe 2/49

DNS extended example

Root name server:
• may not know

authoritative name server
• may know intermediate

name server: who to
contact to find
authoritative name server

requesting host
photek.ethz.ch

gaia.cs.umass.edu

root name server

local name server
dns.ethz.ch

1

2
3

4 5

6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

Networks & Operating Systems Computer Networks T. Roscoe 2/50

DNS Iterated queries

Recursive query
• puts burden of name

resolution on contacted
name server

• heavy load?

Iterated query
• contacted server replies

with name of server to
contact

• “I don’t know this name,
but ask this server”

requesting host
photek.ethz.ch

gaia.cs.umass.edu

root name server

local name server
dns.ethz.ch

1

2
3

4

5 6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

Networks & Operating Systems Computer Networks T. Roscoe 2/51

DNS: Caching and updating records

• once (any) name server learns mapping, it caches mapping
– cache entries timeout (disappear) after some time

• update/notify mechanisms under design by IETF
– RFC 2136
– http://www.ietf.org/html.charters/dnsind-charter.html

Networks & Operating Systems Computer Networks T. Roscoe 2/52

DNS resource records

• Type=NS
– name is domain (e.g. foo.com)
– value is IP address of

authoritative name server for
this domain

RR format: (name, ttl, class, type, value)

• Type=A
– name is hostname
– value is IP address

• Type=CNAME
– name is alias name for some

“canonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com

– value is canonical name

• Type=MX
– value is name of mail server

associated with name

DNS: distributed database storing resource records (RR)

Networks & Operating Systems Computer Networks T. Roscoe 2/53

Example of DNS lookup
$ dig www.sbb.ch

; <<>> DiG 9.3.2-P1 <<>> www.sbb.ch
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18725
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2,

ADDITIONAL: 0

;; QUESTION SECTION:
;www.sbb.ch. IN A

;; ANSWER SECTION:
www.sbb.ch. 30 IN A 194.150.245.35

;; AUTHORITY SECTION:
sbb.ch. 11 IN NS ns2.sbb.ch.
sbb.ch. 11 IN NS ns1.sbb.ch.

;; Query time: 3 msec
;; SERVER: 129.132.98.12#53(129.132.98.12)
;; WHEN: Tue Mar 27 17:25:24 2007
;; MSG SIZE rcvd: 80

Networks & Operating Systems Computer Networks T. Roscoe 2/54

More complex example of DNS lookup
$ dig www.inf.ethz.ch
; <<>> DiG 9.3.2-P1 <<>> www.inf.ethz.ch
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 12816
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 3,

ADDITIONAL: 5

;; QUESTION SECTION:
;www.inf.ethz.ch. IN A

;; ANSWER SECTION:
www.inf.ethz.ch. 86400 IN CNAME www-css.ethz.ch.
www-css.ethz.ch. 86400 IN A 129.132.46.11

;; AUTHORITY SECTION:
ethz.ch. 86400 IN NS scsnms.switch.ch.
ethz.ch. 86400 IN NS dns1.ethz.ch.
ethz.ch. 86400 IN NS dns3.ethz.ch.

;; ADDITIONAL SECTION:
dns1.ethz.ch. 86400 IN A 129.132.98.12
dns3.ethz.ch. 86400 IN A 129.132.250.2
scsnms.switch.ch. 106745 IN A 130.59.1.30
scsnms.switch.ch. 106745 IN A 130.59.10.30
scsnms.switch.ch. 141765 IN AAAA 2001:620::1

Networks & Operating Systems Computer Networks T. Roscoe 2/55

DNS protocol, messages

DNS protocol
• query and reply messages, both with same message format

msg header
• identification: 16 bit

number for query, reply to
query uses same number

• flags:
– query or reply
– recursion desired
– recursion available
– reply is authoritative

Networks & Operating Systems Computer Networks T. Roscoe 2/56

DNS protocol, messages

Name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

Note: unlike others we have seen, DNS is a binary protocol!

Networks & Operating Systems Computer Networks T. Roscoe 2/57

Other Internet application protocols
• … are numerous…
• File systems: NFS, SMB, AFS, etc.
• Encrypted sessions: SSH, SSL, TLS
• Filesharing: BitTorrent, Kazaa, …
• Netnews: NNTP
• Network Management: SNMP
• Games: DOOM (port 666, naturally)
• Historical artifacts: ECHO, DISCARD, CHARGEN,

QUOTE, DAYTIME, TIME, FINGER

• Next: programming application protocols using sockets.

