
Networks & Operating Systems Computer Networks T. Roscoe

Chapter 2a
SOCKET PROGRAMMING

Computer Networks
Timothy Roscoe

Summer 2007

Networks & Operating Systems Computer Networks T. Roscoe 2/2

Overview
• Basic socket concepts

• Java socket programming
– Client & server

– TCP & UDP

– Threads

• C socket programming
– API details

– TCP client and server

– Asynchronous I/O and events

• Bonus: EiffelNet API slides

Networks & Operating Systems Computer Networks T. Roscoe 2/3

Socket programming

Socket API
• introduced in BSD4.1 UNIX, 

1981
• explicitly created, used, 

released by applications 
• client/server paradigm 
• two types of transport service 

via socket API
– unreliable datagram 
– reliable, byte stream-

oriented

a host-local, application-
created/owned,

OS-controlled interface (a 
“door”) into which

application process can 
both send and 

receive messages to/from 
another (remote or 

local) application process

socket

Goal
• Learn building client/server applications that communicate using

sockets, the standard application programming interface

Networks & Operating Systems Computer Networks T. Roscoe 2/4

Socket programming with TCP

Socket
• a door between application process and end-end-transport 

protocol (UDP or TCP)
TCP service
• reliable transfer of bytes from one process to another

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

Internet



Networks & Operating Systems Computer Networks T. Roscoe 2/5

Socket programming with TCP

Client must contact server
• server process must first be 

running already
• server must have created 

socket (“door”) that 
welcomes client’s contact

Client contacts server by
• creating client-local TCP 

socket
• specifying IP address and 

port number of server 
process

• When client creates socket: client 
TCP establishes connection to 
server TCP

• When contacted by client, server 
TCP creates new socket for 
server process to communicate 
with client
– allows server to talk with 

multiple clients

TCP provides reliable, in-order
transfer of bytes (“pipe”) 

between client and server

application viewpoint

Networks & Operating Systems Computer Networks T. Roscoe 2/6

Socket programming with UDP

Remember: UDP: no “connection” between client and server

• no handshaking
• sender explicitly attaches IP 

address and port of destination
• server must extract IP address, 

port of sender from received 
datagram

• UDP: transmitted data may be 
received out of order, or lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

Networks & Operating Systems Computer Networks T. Roscoe 2/7

Java API vs. C API
• Java: 

– High-level, easy to use for common situations

– Buffered I/O

– Failure abstracted as exceptions

– Less code to write

• C:
– Low-level more code, more flexibility

– Original interface

– Maximum control

– Basis for all other APIs in Unix (and Windows)

Networks & Operating Systems Computer Networks T. Roscoe 2/8

Socket programming with TCP (Java)

Example client-server application
• client reads line from standard 

input (inFromUser stream),
sends to server via socket 
(outToServer stream)

• server reads line from socket
• server converts line to 

uppercase, sends back to 
client

• client reads and prints 
modified line from socket 
(inFromServer stream) ou

tT
oS

er
ve

r

to network from network

in
Fr

om
S

er
ve

r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Input stream:
sequence of bytes
into processoutput stream:

sequence of bytes 
out of process

Client
process

client TCP 
socket



Networks & Operating Systems Computer Networks T. Roscoe 2/9

Client/server socket interaction with TCP (Java)

wait for incoming
connection request
connectionSocket =

welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket = 

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket = 

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Networks & Operating Systems Computer Networks T. Roscoe 2/10

Example: Java client (TCP)

import java.io.*; 
import java.net.*; 

class TCPClient { 
public static void main(String argv[]) throws Exception 
{

String sentence; 
String modifiedSentence; 

BufferedReader inFromUser = 
new BufferedReader(new InputStreamReader(System.in)); 

Socket clientSocket = new Socket("hostname", 6789); 

DataOutputStream outToServer = 
new DataOutputStream(clientSocket.getOutputStream()); 

Create
input stream

Create
client socket,

connect to server

Create
output stream

attached to socket

Networks & Operating Systems Computer Networks T. Roscoe 2/11

Example: Java client (TCP), continued

BufferedReader inFromServer = 
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine(); 

outToServer.writeBytes(sentence + '\n'); 

modifiedSentence = inFromServer.readLine(); 

System.out.println("FROM SERVER: " + 
modifiedSentence); 

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

Networks & Operating Systems Computer Networks T. Roscoe 2/12

Example: Java server (TCP)
import java.io.*; 
import java.net.*; 

class TCPServer { 

public static void main(String argv[]) throws Exception 
{

String clientSentence; 
String capitalizedSentence; 

ServerSocket welcomeSocket = new ServerSocket(6789); 

while(true) { 

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient = 
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait on welcoming
socket for contact

by client

Create input
stream, attached 

to socket



Networks & Operating Systems Computer Networks T. Roscoe 2/13

Example: Java server (TCP), continued

DataOutputStream outToClient = 
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine(); 

capitalizedSentence = clientSentence.toUpperCase() + '\n'; 

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in  line
from socket

Create output
stream, attached 

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

Networks & Operating Systems Computer Networks T. Roscoe 2/14

Problem: One client can delay other clients

Server

Wait for 
connection

Wait for 
request

Send reply

Wait for 
connection

Wait for 
request

Send reply

Client 2

Send connection setup

Send request

Wait for reply

Print message

Client 1

Send connection setup

Send request

Wait for reply

Print message

Awfully
long
wait

Networks & Operating Systems Computer Networks T. Roscoe 2/15

In fact, one client can block other clients

Server

Wait for 
connection

Wait for 
request

Client 2

Send connection setup

Client 1

Send connection setup

Doesn’t send 
request!

Never makes
progress

More generally, only one machine 
(client or server) can run at a once!

Networks & Operating Systems Computer Networks T. Roscoe 2/16

The Problem: Concurrency

• Networking applications are 
– Inherently concurrent

– Prone to partial failure

• Hence, “blocking” (waiting for something else) can
– Slow things down (only one machine running at a time)

– REALLY slow things down (mostly, no machines running 
at a time)

– Stop things (something stops and everything else waits)

• Central problem of distributed systems
– Not really networking, but probably should be



Networks & Operating Systems Computer Networks T. Roscoe 2/17

One solution: Threads

ServerSocket welcomeSocket = new ServerSocket(6789);
while(true) { 

Socket connectionSocket = welcomeSocket.accept();
ServerThread thread = new ServerThread(connectionSocket);
thread.start();

}
public class ServerThread extends Thread {

/* … */
BufferedReader inFromClient = new BufferedReader(new

InputStreamReader(connectionSocket.getInputStream()));
DataOutputStream outToClient = new DataOutputStream(

connectionSocket.getOutputStream());
clientSentence = inFromClient.readLine();
capitalizedSentence = clientSentence.toUpperCase() + '\n'; 
outToClient.writeBytes(capitalizedSentence);
/* … */

}
}

Does this 
solve the 
problem?

Networks & Operating Systems Computer Networks T. Roscoe

Threads

• Threads are programming abstractions of separate 
activities

• Still need to worry about resources:
– How many threads?

– How long should each thread live for?

• Many programming patterns:
– Thread-per-request

– Worker pools

– Etc.

• See distributed systems course for more on these

Networks & Operating Systems Computer Networks T. Roscoe 2/19

Client/server socket interaction: UDP (Java)

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket = 

DatagramSocket()

Client

Create, address (hostid, port=x),
send datagram request 
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket = 

DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

Networks & Operating Systems Computer Networks T. Roscoe 2/20

Example: Java client (UDP)

se
nd

P
ac

ke
t

to network from network

re
ce

iv
eP

ac
ke

t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (TCP sent 
“byte stream”)

Input: receives
packet (TCP 
received “byte 
stream”)

Client
process

client UDP 
socket



Networks & Operating Systems Computer Networks T. Roscoe 2/21

Example: Java client (UDP)

import java.io.*; 
import java.net.*; 

class UDPClient { 
public static void main(String args[]) throws Exception 
{

BufferedReader inFromUser = 
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket(); 

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024]; 
byte[] receiveData = new byte[1024]; 

String sentence = inFromUser.readLine(); 

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

Address using DNS

Networks & Operating Systems Computer Networks T. Roscoe 2/22

Example: Java client (UDP), continued

DatagramPacket sendPacket = 
new DatagramPacket(sendData, sendData.length, IPAddress, 9876); 

clientSocket.send(sendPacket); 

DatagramPacket receivePacket = 
new DatagramPacket(receiveData, receiveData.length); 

clientSocket.receive(receivePacket); 

String modifiedSentence = 
new String(receivePacket.getData()); 

System.out.println("FROM SERVER:" + modifiedSentence); 
clientSocket.close();
}

}

Create datagram with 
data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

Networks & Operating Systems Computer Networks T. Roscoe 2/23

Example: Java server (UDP)

import java.io.*; 
import java.net.*; 

class UDPServer { 
public static void main(String args[]) throws Exception 

{

DatagramSocket serverSocket = new DatagramSocket(9876); 

byte[] receiveData = new byte[1024]; 
byte[] sendData  = new byte[1024]; 

while(true)
{

DatagramPacket receivePacket = 
new DatagramPacket(receiveData, receiveData.length); 

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

Networks & Operating Systems Computer Networks T. Roscoe 2/24

Example: Java server (UDP), continued

String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort(); 

String capitalizedSentence = sentence.toUpperCase(); 

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket = 
new DatagramPacket(sendData, sendData.length, IPAddress, 

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out 
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client



Networks & Operating Systems Computer Networks T. Roscoe

TCP Client in C step by step…

• Create a socket

• Bind the socket

• Resolve the host name

• Connect the socket

• Write some data

• Read some data

• Close

• Exit

General flavour: much lower level…

Networks & Operating Systems Computer Networks T. Roscoe 2/26

C API: socket()

#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol);

...

int s = socket( AF_INET, SOCK_STREAM, 0);

Address
family or
domain:
In this case 
IPv4.

Service type
requested, e.g. 
SOCK_STREAM

or
SOCK_DGRAM.

Protocol within a 
service type; 0 

OS chooses:
IPPROTO_TCP

(often only one!)

socket
descriptor:
small integer 
(as with file 
descriptors)

That’s it!

Networks & Operating Systems Computer Networks T. Roscoe 2/27

C API: Specifying local address

struct in_addr {

u_int32_t s_addr;

};

struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

Set to PF_INET (why?)

IPv4 address: 4 bytes packed in 
an integer

Port number and local address
in network endian byte order

Padding (why?)

int bind(int s, const struct sockaddr *a, socklen_t len);

What is bind() actually for?

Networks & Operating Systems Computer Networks T. Roscoe 2/28

struct sockaddr_in sa;

memset(&sa, 0, sizeof(sa);

sa.sin_family = PF_INET;

sa.sin_port = htons(0);

sa.sin_addr = htonl(INADDR_ANY);

If (bind (s, (struct sockaddr *)&sa, sizeof(sa)) < 0) {

perror(“binding to local address”);

close(s);

return -1;

}

C API: Usage of bind()

Seems like a lot of work…



Networks & Operating Systems Computer Networks T. Roscoe 2/29

struct hostent *h;

h = gethostbyname(host)

if (!h || h->h_length != sizeof(struct in_addr)) {

fprintf(stderr, “%s: no such host\n”, host);

return -1;

}

Result: h->h_addr points to the address of the machine we want to talk to.

C sockets: resolving a host name

Networks & Operating Systems Computer Networks T. Roscoe 2/30

struct sockaddr_in sa;

sa.sin_port = htons(port)

sa.sin_addr = *(struct sockaddr *)h->h_addr;

if (connect (s, (struct sockaddr *)&sa, sizeof(sa)) < 0 {

perror(host);

close(s);

return -1;

}

C API: Connecting (finally!)

Filled in from previous slide

Address structure gives all 
needed info about the remote 

end-point

Networks & Operating Systems Computer Networks T. Roscoe

Sending and receiving data

ssize_t send(int s, const void *buf, size_t len, int flags);

• With no flags (0), equivalent to write( s, buf, len )

ssize_t recv(int s, void *buf, size_t len, int flags);

• With no flags, equivalent to read( s, buf, len )

ssize_t sendto(int s, const void *buf, size_t len, int flags, 
const struct sockaddr *to, socklen_t tolen);

ssize_t recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *from, socklen_t *fromlen);

• And these two are for… ?

Networks & Operating Systems Computer Networks T. Roscoe

Putting it all together – the “W” client.



Networks & Operating Systems Computer Networks T. Roscoe

TCP server programming in C 

int listen(int sockfd, int backlog);

• Takes a bound (but not connected!) socket 

• Turns it into a listener for new connections

• Returns immediately
• backlog: number of outstanding connection attempts

– See accept() on next slide

– Traditionally, 5 (not any more…)

• What do you do with a listening socket?

Networks & Operating Systems Computer Networks T. Roscoe

TCP server programming in C 

int accept(int sockfd, 

struct sockaddr *addr, socklen_t *addrlen);

• Takes a listening socket sockfd

• Waits for a connection request, and accepts it (!)
– You don’t get to say “no”…

• Returns a new socket for the connection
– Plus the address of the remote peer

Networks & Operating Systems Computer Networks T. Roscoe

TCP server: example pattern

1. Create a server socket and bind to a local address

2. Call listen()

3. Loop:
1. Call accept() and get a new (“connection”) socket back

2. Read client‘s request from the connection socket

3. Write response back to the connection socket

4. Close the connection socket

• See real example server...

Networks & Operating Systems Computer Networks T. Roscoe

Asynchronous programming: O_NONBLOCK
if ((n = fcntl (s, F_GETFL)) < 0
|| fcntl(s, F_SETFL, n | O_NONBLOCK) < 0) {
perror(“O_NONBLOCK”);

}

Socket descriptor now behaves differently:
• read/recv: as normal if there is data to read. EOF returns 0.

Otherwise, returns -1 and errno set to EAGAIN.
• write/send: if data cannot yet be sent, returns -1 and

errno = EAGAIN

• connect: if no immediate success, returns -1 and
errno = EINPROGRESS

• accept: if no pending connections, returns -1 and
errno = EWOULDBLOCK



Networks & Operating Systems Computer Networks T. Roscoe

Asynchronous programming: select()
int select(int nfds, 

fd_set *readfds, 
fd_set *writefds,
fd_set *exceptfds, 
struct timeval *timeout);

void FD_CLR(int fd, fd_set *set);
int FD_ISSET(int fd, fd_set *set);
void FD_SET(int fd, fd_set *set);
void FD_ZERO(fd_set *set);

• Returns when anything happens on any set file (i.e. socket) 
descriptor, or the timeout occurs. 

• The fd_sets are modified to indicate fds that are active%%

Sets of file 
descriptors to watch 

for activity

Networks & Operating Systems Computer Networks T. Roscoe

A basic event loop

• Operations to register callbacks for
– File (socket) descriptors

– Timeout events

• Map from socket descriptor → callback

• Priority queue of timer events

• Loop:
– Process timeouts

– Call select with next timeout

– Process any active socket descriptors

Networks & Operating Systems Computer Networks T. Roscoe

Event programming:

• Event programming is hard
– Callbacks need to maintain state machine for each 

activity (“stack ripping”)

– Anything that blocks has to be handled with a callback

– Hard to deal with long-running operations

• But…
– No need for synchronization (at least, with one processor)

– Very scalable (only one thread)

– Model similar to interrupts close to how one needs to 
implement a practical networking stack 

Networks & Operating Systems Computer Networks T. Roscoe

More information on TCP and C

• Upcoming labs…

• Some of this material is from the excellent:

“Using TCP Through Sockets”, 

by David Mazières, Frank Dabek, and Eric Peterson.
http://people.inf.ethz.ch/troscoe/teaching/net2-1.pdf



Networks & Operating Systems Computer Networks T. Roscoe

Finally…

• Backup slides also cover Eiffel networking classes
– Exercises/labs will be Java and C

– Eiffel abstracts events into “pollers” and related objects

• Next week:
– Java development 

– Eclipse tutorial for Java and C

• Then: 
– Transport protocols.

Networks & Operating Systems Computer Networks T. Roscoe 2/42

EiffelNet: Sockets and communication modes

NETWORK_
DATAGRAM_

SOCKET

SOCKET

NETWORK_
SOCKET

NETWORK_
STREAM_
SOCKET

Two modes of socket communication:
- stream communication
- datagram communication

Stream socket:
- provided by the STREAM_classes
- provides sequenced communication without any 

loss or duplication of data 
- synchronous: the sending system waits until it has

established a connection to the receiving system 
and transmitted the data

Datagram socket:
- provided by the DATAGRAM_classes
- asynchronous: the sending system emits its data 

and does not wait for an acknowledgment 
- efficient, but it does not guarantee sequencing,

reliability or non-duplication

Networks & Operating Systems Computer Networks T. Roscoe 2/43

Example: Eiffel Server (TCP - stream socket)
class OUR_SERVER
inherit

SOCKET_RESOURCES
STORABLE

create
make

feature
soc1, soc2: NETWORK_STREAM_SOCKET
make (argv: ARRAY [STRING]) is

local
count: INTEGER

do
if argv.count /= 2 then

io.error.putstring ("Usage: ")
io.error.putstring (argv.item (0))
io.error.putstring ("portnumber")

else
create soc1.make_server_by_port (argv.item (1).to_integer)
from

soc1.listen (5)
count := 0

until
count := 5

loop
process
count := count + 1

end
soc1.cleanup

end
rescue soc1.cleanup
end

Closes the open socket and frees 
the corresponding resources

CLIENT:
1) Sends to the server a list of strings
5) Receives the result from the server and 

print it
SERVER:

2) Receives the corresponding object structure
3) Appends to it another string
4) Returns the result to the client

Accepts communication with the 
client and exchange messages

• Accepts communication with the client
• Receives a message from the client
• Extends the message
• Sends the message back to the client

Create server socket on ‘portnumber’

Listen on socket for at most ‘5’ connections

Networks & Operating Systems Computer Networks T. Roscoe 2/44

class OUR_MESSAGE

inherit
LINKED_LIST

[STRING]
STORABLE
undefine

is_equal, copy
end

create
make

end

process is
local

our_new_list: OUR_MESSAGE
do

soc1.accept
soc2 ?= soc1.accepted
our_new_list ?= retrieved (soc2)

from
our_new_list.start

until
our_new_list.after

loop
io.putstring (our_new_list.item)
our_new_list.forth
io.new_line

end

our_new_list.extend ("Server message. %N")
our_new_list.general_store (soc2)
soc2.close

end
end

The message exchanged between 
server and client is a linked list of 
strings

• the server obtains access to the server
• accept - ensures synchronization to with the client
• accept - creates a new socket which is accesible

through the attribute accepted
• the accepted value is assigned to soc2 - this makes 
soc1 available to accept connections with other 
clients

Extends the message received from the client

Receives a message from the 
client, extend it, and send it back.

Sends the extended message back to the client 

Closes the socket

Example: Eiffel Server (TCP), contd.



Networks & Operating Systems Computer Networks T. Roscoe 2/45

class OUR_CLIENT
inherit

NETWORK_CLIENT
redefine

received
end

create
make_client

feature
our_list: OUR_MESSAGE
received: OUR_MESSAGE

make_client (argv: ARRAY [STRING]) is
-- Build list, send it, receive modified list, and 

print it.
do

if argv.count /= 3 then
io.error.putstring ("Usage: ")
io.error.putstring (argv.item (0))
io.error.putstring ("hostname portnumber”)

else
make (argv.item (2).to_integer, argv.item (1))
build_list
send (our_list)
receive
process_received
cleanup

end
rescue
cleanup
end

…

4. Receives the message 
from the server

5. Prints the content of 
the received message

6. Closes the open socket 
and free the corresponding 
resources

3. Sends the list of strings 
to the server

1. Creates a socket and 
setup the communication

2. Builds the list of strings

The message exchanged 
between server and client

Example: Eiffel Client (TCP - stream socket)

Networks & Operating Systems Computer Networks T. Roscoe 2/46

Example: Eiffel Client (TCP ), continued

build_list is
do

create our_list.make
our_list.extend ("This ")
our_list.extend ("is ")
our_list.extend (“a")
our_list.extend ("test.")

end

process_received is
do

if received = Void then
io.putstring ("No list received.")

else
from received.start until received.after loop

io.putstring (received.item)
received.forth

end
end

end
end

Prints the content of the 
received message in 
sequence

Builds the list of strings 
‘our_list’ for transmission to 
the server

Networks & Operating Systems Computer Networks T. Roscoe 2/47

Example: Eiffel Server (UDP - datagram socket)

class OUR_DATAGRAM_SERVER
create

make
feature

make (argv: ARRAY [STRING]) is
local

soc: NETWORK_DATAGRAM_SOCKET
ps: MEDIUM_POLLER
readcomm: DATAGRAM_READER
writecomm: SERVER_DATAGRAM_WRITER

do
if argv.count /= 2 then

io.error.putstring ("Usage: ")
io.error.putstring (argv.item (0))
io.error.putstring (" portnumber")

else
create soc.make_bound (argv.item (1).to_integer)
create ps.make

create readcomm.make (soc)
ps.put_read_command (readcomm)
create writecomm.make (soc)
ps.put_write_command (writecomm)
. . .

Creates poller with multi-event polling

Creates a network datagram 
socket bound to a local 
address with a specific port

1. Creates read and write commands 
2. Attach them to a poller 
3. Set up the poller for execution

1. Creates a read command which it attaches to the socket
2. Enters the read command into the poller
3. Creates a write command which it attaches to the socket
4. Enters the write command into the poller

Networks & Operating Systems Computer Networks T. Roscoe 2/48

Example: Eiffel Server (UDP), continued

. . .
ps.make_read_only

ps.execute (15, 20000)
ps.make_write_only
ps.execute (15, 20000)
soc.close

end
rescue

if not soc.is_closed then
soc.close

end
end

end

1. Sets up the poller to accept read commands only and 
then executes the poller  -- enable the server to get the 
read event triggered by the client’s write command

2. Reverses the poller’s set up to write-only, and then 
executes the poller

Monitors the sockets for the corresponding events and 
executes the command associated with each event that 
will be received



Networks & Operating Systems Computer Networks T. Roscoe 2/49

Example: Eiffel Client (UDP - datagram socket)

class OUR_DATAGRAM_CLIENT

create
make

feature
make (argv: ARRAY [STRING])  is

local
soc: NETWORK_DATAGRAM_SOCKET

ps: MEDIUM_POLLER
readcomm: DATAGRAM_READER
writecomm: CLIENT_DATAGRAM_WRITER

do
if argv.count /= 3 then

io.error.putstring ("Usage: ")
io.error.putstring (argv.item (0))
io.error.putstring ("hostname portnumber")

else
create soc.make_targeted_to_hostname

(argv.item (1), argv.item 
(2).to_integer)

create ps.make

create readcomm.make (soc)
ps.put_read_command (readcomm)
create writecomm.make (soc)
ps.put_write_command (writecomm)
. . .

1. Creates a read command which it attaches to the socket
2. Enters the read command into the poller
3. Creates a write command which it attaches to the socket
4. Enters the write command into the poller

Command executed in case of a read 
event

1. Create read and write commands 
2. Attach them to a poller 
3. Set up the poller for execution

Create a datagram socket connected to 
‘hostname’ and ‘port’

Creates poller with multi-event polling

Command executed by the client when 
the socket “is ready for writing”

Networks & Operating Systems Computer Networks T. Roscoe 2/50

. . .
ps.make_write_only
ps.execute (15, 20000)
ps.make_read_only
ps.execute (15, 20000)
soc.close

end
rescue

if not soc.is_closed then
soc.close

end
end Monitors the sockets for the corresponding events and 

executes the command associated with each event that 
will be received

1. Sets up the poller to write commands only and then 
executes the poller  

2. Reverses the poller’s set up to accept read commands 
only, and then executes the poller -- enables the client to 
get the read event triggered by the server’s write 
command

Example: Eiffel Client (UDP), continued

Networks & Operating Systems Computer Networks T. Roscoe 2/51

Example: Eiffel Command class (UDP)

class OUR_DATAGRAM_READER

inherit
POLL_COMMAND
redefine

active_medium
end

create
make

feature
active_medium: 

NETWORK_DATAGRAM_SOCKET

execute (arg: ANY) is
local

rec_pack: DATAGRAM_PACKET
i: INTEGER

do
rec_pack := active_medium.received (10, 0)
io.putint (rec_pack.packet_number)
from i := 0 until i > 9 loop

io.putchar (rec_pack.element (i))
i := i + 1

end
end

end

Commands and events:
• Each system specify certain communication events 
that it wants to monitor, and certain commands to be 
executed on occurrence of the specified events

• The commands are objects, instances of the class 
POLL_COMMAND

• The class POLL_COMMAND has the procedure 
execute which executes the current command 

Command classes:

• OUR_DATAGRAM_READER – represents operations 
that must be triggered in the case of a read event

• CLIENT_DATAGRAM_WRITER – command  
executed by the client when the socket “is ready for 
writing”

• SERVER_DATAGRAM_WRITER – command 
executed by the server when the socket “is ready for 
writing”

Prints all the caracters from the packet

Receive a packet of size 10 characters

Prints the packet number of the packet

Networks & Operating Systems Computer Networks T. Roscoe 2/52

class CLIENT_DATAGRAM_WRITER
inherit

POLL_COMMAND
redefine

active_medium
end

create
make

feature
active_medium: 

NETWORK_DATAGRAM_SOCKET

execute (arg: ANY) is
local

sen_pack: DATAGRAM_PACKET
char: CHARACTER

do
-- Make packet with 10 characters ‘a’ to 

‘j’
-- in succesive positions
create sen_pack.make (10)
from char := ‘a’ until char > ‘j’ loop

sen_pack.put_element (char |-| ‘a’)
char := char.next

end
sen_pack.set_packet_number (1)
active_medium.send (sen_pack, 0)

end
end

class SERVER_DATAGRAM_WRITER
inherit

POLL_COMMAND
redefine

active_medium
end

create
make

feature
active_medium: 

NETWORK_DATAGRAM_SOCKET

execute (arg: ANY) is
local

sen_pack: DATAGRAM_PACKET
i: INTEGER

do
-- Make packet with 10 characters ‘a’ in
-- succesive positions
create sen_pack.make (10) 
from i := 0 until i > 9 loop

sen_pack.put_element (‘a’, i)
i := i + 1

end
sen_pack.set_packet_number (2)
active_medium.send (sen_pack, 0)

end
end

Command executed by the client when 
the socket “is ready for writing”

Command executed by the server when 
the socket “is ready for writing”

Example: Eiffel Command class (UDP), contd.


